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ABSTRACT
Cloud services have become a cheap and popular means of
computing. They allow users to synchronize data between
devices and relieve low-powered devices from heavy com-
putations. In response to the surge of smartphones and
mobile devices, several cloud-based Web browsers have be-
come commercially available. These “cloud browsers” as-
semble and render Web pages within the cloud, executing
JavaScript code for the mobile client. This paper explores
how the computational abilities of cloud browsers may be ex-
ploited through a Browser MapReduce (BMR) architecture
for executing large, parallel tasks. We explore the computa-
tion and memory limits of four cloud browsers, and demon-
strate the viability of BMR by implementing a client based
on a reverse engineering of the Pu�n cloud browser. We
implement and test three canonical MapReduce applications
(word count, distributed grep, and distributed sort). While
we perform experiments on relatively small amounts of data
(100 MB) for ethical considerations, our results strongly sug-
gest that current cloud browsers are a viable source of arbi-
trary free computing at large scale.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Security

Keywords
Cloud computing, web browsers, access control

1. INTRODUCTION
Software and computation is increasingly moving into“the

cloud.” Infrastructure-as-a-Service (IaaS) and Platform-as-
a-Service (PaaS) have e↵ectively commoditized computing
resources, enabling pay-per-use computation. For example,
in April 2012, Amazon’s on-demand instances of EC2 cost as
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little as US$0.08 per hour [4]. This shift towards cloud com-
puting provides many benefits to enterprises and developers.
It consolidates hardware and maintenance, and it allows or-
ganizations to purchase only as much computing as they
need. Equally important, the ubiquity of cloud providers
and sophisticated interfaces make incorporating cloud func-
tionality simple for virtually any piece of software.

Cloud computing has substantially benefited smartphones
and mobile devices, relieving them of computation, storage,
and energy constraints. Recently, several commercial ven-
tures have deployed infrastructures for rendering Web pages
in the cloud (e.g., Amazon Silk [5], Opera Mini [23], and Puf-
fin [12]). The obvious benefit to this architecture is relieving
the mobile device from the graphical rendering. However,
this is less of a concern for newer, more powerful smart-
phones. Such devices benefit more from the cloud server
downloading the many parts of a Web page using high-
bandwidth links and only using the higher-latency, last-mile
wireless network once. Proxy-based Web page rendering has
existed in literature for more than a decade [17, 16, 19, 8, 9]
and is of continued interest [10, 30]; however, it was not until
the recent surge in smartphone popularity that commercial
o↵erings became more widespread and well provisioned.

Cloud-basedWeb browsers (which we call“cloud browsers”
for short) are often provisioned to exceed the computational
power and functionality of a desktop browser. For example,
Cloud Browse runs a modified Firefox desktop browser [3].
Over the past decade, websites have evolved into full-fledged
applications executing nontrivial computations written in
JavaScript. Cloud browsers must execute this JavaScript.
Given this mix of powerful cloud-based computing ability
and a substrate for general executions, we sought to investi-
gate whether opportunities for exploiting unintended func-
tionality were now possible. Specifically, was it now possi-
ble to perform arbitrary general-purpose computation within

cloud-based browsers, at no cost to the user?1 A success-
ful outcome would demonstrate the ability to perform par-

asitic computing [7] within the cloud browser environment,
whereby it is transformed into an unwitting computational
resource merely through supplying browser requests.

In this paper, we explore the ability to use cloud browsers
as open computation centers. To do this, we propose the
Browser MapReduce (BMR—pronounced beemer) architec-
ture, which is motivated by MapReduce [14], but contains
distinct architectural di↵erences. In our architecture, a mas-
ter script running on a PC parameterizes and invokes map-

1Since JavaScript is Turing-complete, any computation is
theoretically feasible.



per jobs in separate cloud browser rendering tasks. When
complete, these workers save their state in free cloud storage
facilities (e.g., provided by URL shortening services), and re-
turn a link to the storage location. The master script then
spawns reducer jobs that retrieve the intermediate state and
aggregate the mapper results.

To demonstrate the functionality of our cloud browser-
based computational infrastructure, we implement three canon-
ical MapReduce programs: a) word count, b) distributed
grep, and c) distributed sorting. Compared to Amazon’s
Elastic MapReduce (EMR), BMR was faster for distributed
grep, but several times slower for word count and distributed
sort due to high communications costs. However, it does
so at no monetary cost. Note that due to ethical consid-
erations, we executed relatively small-scale computations in
order to not overly tax the cloud browsers or the URL short-
ening services. As such, our experiments show a savings of
only a few cents. However, larger jobs over longer periods
of time can lead to substantial savings. Additionally, we
explore the potential of BMR for performing parallelizable
tasks that benefit from anonymity, e.g., cracking passwords.
Attackers have already paid to use Amazon EC2 [2], and
moving such activities to cloud browsers is likely.

This paper makes the following contributions:

• We identify a source of free computation and charac-

terize the limitations of four existing cloud browsers.

To our knowledge, we are the first to consider cloud-
based Web browsers as a means of performing arbi-
trary computation.

• We design and implement BMR, a MapReduce mo-

tivated architecture for performing large jobs within

cloud browsers. Cloud browser providers artificially
limit computation to mitigate buggyWeb pages. Using
a MapReduce motivated architecture, we show how to
coordinate resources in multiple cloud browser render-
ing tasks through the use of free storage made available
by URL shortening services.

• We port three existing sample MapReduce example ap-

plications to BMR and characterize their performance

and monetary savings. BMR has di↵erent limitations
than traditional MapReduce (e.g., storage), and there-
fore must be optimized accordingly. We report on our
experiences working within these limitations.

The remainder of this paper proceeds as follows. Section 2
overviews our architecture and lays out our design chal-
lenges. Section 3 characterizes the computation and mem-
ory limitations of several popular cloud browsers. Section 4
describes the BMR map and reduce primitives, scheduling,
and the example applications. Section 5 discusses our im-
plementation of BMR. Section 6 evaluates the performance
of those examples in the Pu�n browser. Section 7 discusses
mitigations and optimizations. Section 8 overviews related
work. Section 9 concludes.

2. APPROACH OVERVIEW
The goal of this paper is to explore methods of perform-

ing large computations within cloud-based Web browsers,
ideally anonymously and at no monetary cost. While cloud
browsers execute JavaScript code, which is Turing-complete,
we expect cloud browser providers to implement resource
limits on JavaScript execution. Therefore, we must divide
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Figure 1: Browser MapReduce (BMR) Architecture

our large job into smaller parts. MapReduce [14] has become
a popular abstraction for executing large distributed com-
putation. Therefore, we propose a MapReduce-motivated
execution framework called Browser MapReduce (BMR).

To better understand BMR, we first describe MapReduce.
A MapReduce job is implemented as two procedures: Map

and Reduce. Execution always begins with the mapping
phase. A mapper extracts a set of key-value pairs of interest
from each input record. For example, for a MapReduce job
to count the number of words in a set of documents, the
mapper determines the number of instances of each word
in a small subset of the documents. Here, the word is the
key and the number of instances is the value. The results of
multiple mappers are then combined in the reducer phase.
For word count, the reducer aggregates the word counts to
produce an overall count for each word in the entire dataset.

In MapReduce, computational resources are abstracted
as nodes within a cluster. Job coordination is performed
by a master node. The master is responsible for handling
communication synchronization, fault tolerance, and paral-
lelization. Since a failure of the master node leads to a failed
computation, the master node is often replicated. The re-
maining nodes in the cluster are worker nodes. A worker
node can be a mapper, a reducer, or both. Note that a single
MapReduce job consists of many mappers and reducers. To
minimize communication overhead, the intermediate results
generated by the mappers are stored locally and the loca-
tions are communicated to the master. By strategically par-
titioning the dataset, scheduling mapper and reducer jobs,
and tracking these instances accordingly, the MapReduce
framework can scale for both computationally intensive and
large data processing applications.

Executing MapReduce operations within a cloud browser
environment introduces several challenges:

• Cloud browsers have artificial limitations. Each cloud
browser instance has artificial limitations placed on the
amount of processing it can devote to a script, the size
of memory allocated to that instance, and the time
for which a script can execute on the browser safely
without crashing the browser.

• Job scheduling must account for the artificial limita-

tions of the target cloud browser node and the expected



compute time for the specific task. Each MapReduce
application requires di↵erent complexity for the map-
per and reducer. The scheduler must partition the job
based on this complexity and the limitations of the
target cloud browser.

• Mappers cannot use local storage to communicate in-

termediate results. There is no guarantee that a re-
ducer can be spawned in the same cloud browser in-
stance as the mapper. Furthermore, cloud browser in-
stances cannot communicate with one another. There-
fore, we must identify an alternative (ideally free) stor-
age location for intermediate results.

The BMR architecture, shown in Figure 1, is motivated
by the MapReduce framework, but di↵ers in certain aspects.
First, the master node runs on the user’s PC. Since the mas-
ter node is running on the user’s PC, we can assume it is
reliable. However, we must also assume it has limited band-
width. Both the Map and Reduce functions are written in
JavaScript and retrieved from the BMR job server hosting
the application. To reduce the bandwidth requirements on
the user PC, we assume that the dataset is statically served
from a publicly accessible web server.2 Due to the same-
origin policy (SOP), if the data server is di↵erent than the
script server, a CORS policy [29] must be set appropriately.
Again, to reduce user PC bandwidth requirements, interme-
diate results are not returned directly to the master script.
BMR uses a URL shortening service (e.g., bit.ly) for free
cloud storage (see below). These URLs are then returned to
the master script along with meta-information to aid reducer
scheduling (discussed further in Section 4). Once the map-
pers complete, reducer scripts are similarly spawned and the
final results returned. Note that the final results can be an-
other set of URLs, or the data itself, depending on storage
capacity limitations in the cloud browser instance.

As noted above, BMR requires cloud storage for interme-
diate results. We considered many alternatives for storing
this data, and decided on a URL shortening service, as it is
both free and semi-anonymous (an account is required, but
doing so only requires a valid email address). Fundamen-
tally, URL shortening services provide key-value storage,
where a shortened URL returns a long data string, which
in our experiments can be up to 2022 characters. Other op-
tions we considered included the simple strategy of returning
the intermediate result data directly to the mapper script;
however this requires user PC bandwidth. Another option is
to store the intermediate results back to the dataset server.
However, we wanted to decouple dataset storage from inter-
mediate results storage for several reasons, e.g., read-only
content is easier/cheaper to host. A third option was to pay
for cloud storage (e.g., Amazon S3 [6]); however, computa-
tion would no longer be free.

3. BROWSER RESOURCE LIMITATIONS
BMR executes jobs (i.e., mappers and reducers) as ren-

dering tasks for a cloud browser. In practice, cloud browser
providers limit the resources provided to each rendering task
to limit the consumption of buggy JavaScript. In order to
optimally partition the input data and schedule workers,
BMR must take into account the limitations of the target

2If authentication is desired, authentication tokens can be
passed to the mapper and reducer scripts.

function cpu_benchmark () {
for(i=0; i<n; i++) {

if(i%m == 0) {
document.getElementById

("var"). innerHTML = "Reached "+(i);
}

}
}

Figure 2: Computation benchmark

cloud browser. For each of the studied cloud browsers, we
characterized the JavaScript capabilities; Flash and Java ap-
plets were not supported and therefore not characterized.

In the following discussion, we consider CPU cycles, elapsed
execution time, and memory consumption. We also consid-
ered persistent storage provided by HTML5; however, we
found it to be substantially lower than the RAM available
to a cloud browser instance.

3.1 Benchmarks
We use simple JavaScript functions to benchmark the

cloud browser capabilities. Each benchmark is designed to
isolate a specific characteristic. Our benchmarking proce-
dure has two stages. First, we use a small reporting interval
to incrementally discover the limit. Then, we confirm that
the interval reporting does not a↵ect the results by specify-
ing a report interval just below the determined limit. For
example, the cloud browser might terminate a process if it
is unresponsive, and updating the display indicates activity.

3.1.1 Computation

The CPU resource limitations configured by the cloud
browser provider impacts how much data should be allo-
cated to each worker. To measure CPU capacity, we per-
form a tight loop and report the maximum number of iter-
ations reached. While this is not a direct measurement of
CPU cycles, it provides an approximation for comparison
and scheduling parameterization.

Figure 2 shows our CPU cycle benchmark JavaScript func-
tion. The function assumes a global variables n and m. n

is a positive integer (e.g., 1 billion) specifying the number
of iterations to perform. m specifies the “printing” interval.
As mentioned above, the interval reporting helps to iden-
tify the progress before the browser crashes. After a limit
is determined, m is increased to the maximum reached value
to ensure that the act of printing does not extend the com-
putation limit. Finally, we note that printing a value takes
CPU cycles itself. While changing m can a↵ect the maximum
number of iterations performed, our results are conservative.

3.1.2 Elapsed Time

While cloud browser providers likely limit CPU cycles,
they also might limit the wall-clock time. Since BMR re-
quires the worker to download and upload data to network
servers, the scheduling algorithm must account for this. To
characterize execution time limits, we perform the JavaScript
equivalent of sleep().

Figure 3 shows our elapsed time benchmark JavaScript
function. Here, we use time_benchmark() as a callback
function passed to JavaScript’s built-in setTimeout() timer.
Note that time_benchmark() is not recursive. Rather, it re-
turns and is called again by the JavaScript runtime. Finally,
the benchmark is parameterized by a global variable n in-



var time =0;
function time_benchmark () {

document.getElementById
("var"). innerHTML = "Time: "+time;

time = time + n;
var x = setTimeout(time_benchmark ,n*1000);

}

Figure 3: Elapsed time benchmark

function memory_benchmark () {
var arr=new Array ();
for(i=0; i<n; i++) {

arr.push(i);
if (i%m == 0) {

document.getElementById
("var"). innerHTML =" Reached " + i;

}
}

}

Figure 4: Memory consumption benchmark

dicating the number of seconds to sleep on each iteration.
The benchmark keeps track of the total time and reports it
on each interval. For testing, we began with small n (e.g.,
1 second) and repeated times with a much larger n (e.g., 1
hour). Note that since some cloud browsers continued for
hours without termination (see Section 3.3), we did not con-
firm a final maximum execution time.

3.1.3 Memory

The last resource limitation we characterize is working
memory (i.e., RAM). Since BMR jobs operate on partial
datasets, the scheduling algorithm needs to account for res-
ident memory capacity when partitioning the dataset. Note
that we also considered persistent storage (e.g., HTML5’s
LocalStorage); however, the W3C specification3 indicates
an arbitrary limit of 5MB per origin, which is significantly
less then the memory capacities we report in Section 3.3. We
verified the small persistent storage capacity on each of our
target cloud browsers using a publicly available benchmark.4

Figure 4 shows our memory benchmark JavaScript func-
tion. This benchmark simply continues to append values to
a dynamically allocated array. Similar to the CPU bench-
mark, the memory benchmark is parameterized by global
variables n and m that determine the maximum number of it-
erations, and the reporting interval, respectively. Note that
n also defines the upper bound on memory allocation. Since
arr is an integer array, the memory capacity in bytes is i⇥4.

3.2 Studied Cloud Browsers
We analyzed the resource limits of the following com-

mercially available cloud browsers. When selecting cloud
browsers for BMR, one must ensure that the framework is
capable of executing JavaScript on the server. For example,
even though Opera Mobile uses Opera Turbo, we found that
Web pages were compressed and rendered locally. This was
also the case for the Android version of UC Browser [28].

Amazon Silk: The Amazon Silk browser [5] is exclusively
available for Amazon’s Kindle Fire tablet. Every time the
user loads a web page, Silk dynamically decides whether
rendering should occur on the device or on Amazon Web
3http://dev.w3.org/html5/webstorage/#disk-space
4http://arty.name/localstorage.html

Services. Due to the dynamic nature of Amazon Silk’s ren-
dering decision, we were unable to confirm without doubt
that the JavaScript was executed on the server for our exper-
iments. However, we did observe the device communicating
with Amazon continually through each experiment.

Cloud Browse: The Cloud Browse browser [3] is devel-
oped by AlwaysOn Technologies. It hosts a Firefox browser
session on cloud servers and relays the rendered page to the
mobile device. Cloud Browse currently only exists for iOS,
but the Android version is expected. Since Firefox runs on
the server, and based on observing continuous communica-
tion with Amazon EC2 servers throughout each experiment,
we conclude that JavaScript executes on the server.

Opera Mini: The Opera Mini browser [23] is designed
specifically for mobile environments with limited memory
and processing power. It uses the Opera Turbo technology
for faster rendering and compression of web pages. Note
that the Opera Mobile browser also allows the user to enable
Opera Turbo; however, in our experiments, enabling Opera
Turbo only added compression and did not appear to ren-
der the content on the server. In contrast, the Opera Mini
experiments where highly indicative of JavaScript execution
on the server. The browser communicated to the server
throughout the experiment. Furthermore, when the compu-
tation limit was exceeded, Opera Mini navigated to a Web
page with the URL “b:D8EAD704Processing.” This page
had the title “Internal server error” and indicated “Failed to
transcode URL” within the main window.

Pu�n: The Pu�n browser [12], developed by CloudMosa
Inc., is designed for mobile devices and is advertised as ren-
dering web pages in the cloud. It is available for both An-
droid and iOS. The developer indicates that the browser
does not store users’ private data (e.g., cookies and history)
on the cloud servers. All communication between the client
and cloud browser is encrypted via SSL. During our experi-
ments, we observed continuous communication between the
client and cloud browser servers. Server side JavaScript ex-
ecution is further confirmed by our implementation of BMR
using Pu�n in the latter sections of this paper.

3.3 Benchmark Results
We experimentally determined a conservative lower bound

on the computation, time, and memory limits for each of the
four cloud browsers. Amazon Silk was tested using version
1.0.22.7 10013310 on a Kindle Fire tablet. Cloud Browse
was tested using version 4.2.1 (33) on an iPhone 3G running
iOS v. 5.1 (9B176). Opera Mini was tested using v. 7.0.3 on
a Samsung Galaxy Nexus running Android v. 4.0.2. Finally,
we tested Pu�n v. 2.2.5065 on a Samsung Galaxy Nexus
running Android v. 4.0.2. The experiments for the reported
results were performed in late May 2012.

Each browser has di↵erent failure modes, which lead to
di↵erent strategies for determining the reported limit. Re-
call that the computation and memory benchmarks are pa-
rameterized by global variables n and m. Ideally, when the
browser reaches its limit, it crashes in such a way that the
greatest multiple of m reached is displayed. For Amazon Silk,
a dialog box is shown, but the values on the Web page are
still viewable. For Cloud Browse and Pu�n, the compu-
tation simply stalls when the limit is reached, and no error
message is reported. Finally, as described above, Opera Mini
redirect to a server error page. In this case, we resorted to



Table 1: Cloud browser benchmark results
Computation Elapsed Memory

Browser Iterations ⇡ Time Time Array Size Data Size
Amazon Silk 140,000,000 30 secs 24 hrs⇤ 16,000,000 61 MB
Opera Mini 50,000,000 7 secs 6 secs 33,525,000 128 MB
Cloud Browse 40,000,000,000 1 hr 24 hrs⇤ 121,000,000 462 MB
Pu�n 200,000,000,000 2 hrs 24 hrs⇤ 58,850,000 224 MB
⇤
The benchmark was terminated after 24 hours.

using a binary search strategy to find the limit by adjusting
n and keeping m = n - 1.

Computation: Table 1 shows both the number of iter-
ations of the for loop that can be computed before the
cloud browser fails. Our tests increase loops in increments
of 1,000,000. We confirm the calculated value by setting n to
that value and re-running the experiment 20 times. Table 1
also reports an approximate time for each experiment. The
time varied per execution, but not significantly with respect
to the listed duration.

Elapsed Time: The next column in Table 1 shows elapsed
execution time when performing negligible computation (i.e.,
using setTimeout()). We let Amazon Silk, Cloud Browse,
and Pu�n run for 24 hours before terminating the exper-
iment. Clearly, these browsers do not have a limit purely
based on wall-clock time. However, Opera Mini consistently
terminated after exactly six seconds. This is notable since
computation benchmark experiments consistently exceed six
seconds, indicating that Opera Mini terminates JavaScript
execution if it is not performing computation.

Memory: The final two columns of Table 1 show the results
of the memory benchmark. Using the appropriate search
strategy, we discovered the reported value in increments of
500,000. Similar to the computation benchmark, we vali-
dated the value by re-executing the experiment a total of 20
times. For Opera Mini, we initially determined 34,000,000
array elements; however, after a few re-executions, this value
failed. Reducing the limit to 33,500,000 for the subsequent
runs succeeded. The listed value is the average of 20 trials.
The memory for Pu�n varied more greatly. When the mem-
ory limit of Pu�n is exceeded, the display shows the last m
value reached. Since updating the page does not a↵ect Pu�n
runtime, we executed the experiments with m set to 500,000.
The array size ranged from 50,000,000 to 66,500,000. We
report the average in Table 1. This ranges indicates a de-
pendence on either load on the server, or individual servers
configured with di↵erent memory resource limits. Finally,
the last column in the table simply converts the array size
to bytes, assuming each array element occupies four bytes,
and rounds to the nearest MB.

Summary: Based on our experiments, Cloud Browse and
Pu�n provide significantly more computational ability than
Amazon Silk and Opera Mini; each provide at least an hour
of computation time. While Cloud Browse provides more
RAM, the di↵erence turns out to be inconsequential. As
discussed in Section 2, BMR uses a URL shortening service
for communication between workers. For this paper, we use
the popular bit.ly service. We experimentally determined
that bit.ly can encode long URLs up to 2022 characters
in length but rate-limits requests to 99 per IP address per
minute. These limitations on communication size limita-
tion makes BMR best suited for CPU-intensive tasks, as

opposed to storage heavy tasks. As Pu�n provides a higher
computation limit than Cloud Browse, we chose it for our
proof-of-concept BMR implementation.

4. DESIGNING AND SCHEDULING JOBS
In the previous section, we characterized the resource lim-

itations of four cloud browsers and found that two of the
cloud browsers provide a significant amount of processing
capability. In this section, we show how one can break up
larger jobs to run within executions of JavaScript (i.e., re-
quests for Web pages) on cloud browsers. Our experiments
led to two guiding principles: 1) optimize jobs for higher
worker computation loads; and 2) limit worker communica-
tion data size where possible. This leads to di↵erent opti-
mizations than one might find in MapReduce. For example,
a BMR mapper can be more complex if it reduces the data
communication size.

To understand BMR’s ability to provide MapReduce func-
tionality, we explore three canonical applications:

• Word count: Counts the number of instances of each
word in a set of input files. The output has an entry
for each word and the number of times it appears.

• Distributed grep: Finds instances of a regular expres-
sion pattern in a set of input files. The output is the
matching lines. In the case of BMR, we output the file
and line number of each match.

• Distributed sort: TeraSort [22] is a popular benchmark
for MapReduce frameworks that implements a simpli-
fied bucket sort in a distributed fashion. We use input
from the teragen application, which provides 98 char-
acter records containing 10 characters for the key and
88 characters for the value. Our BMR bucket sort ap-
plication outputs the sorted keys and the file number
in which the records originated.

By first looking at how map and reduce abstractions are
designed and jobs scheduled, we will better demonstrate how
these applications are implemented within BMR.

4.1 Map and Reduce Abstraction
Both the mapper and reducer jobs are implemented as

Web pages that include JavaScript to perform the desired
functionality. Each BMR application consists of mapper.

html and reducer.html Web pages that include mapper.js

and reducer.js, respectively.
Figure 5 depicts the BMR mapper abstraction. The map-

per execution begins with the master script using the cloud
browser to visit the URL of the mapper Web page (http:
//bmr_server/mapper.html). BMR assumes that the in-
put for the overall MapReduce application is separated into
many small text files. When each mapper job is started,
the mapper URL includes HTTP GET parameters specify-
ing private data pdat (e.g., range parameters for dividing



http://data_server

mapper.jsMaster

URL Shortener

http://bmr_server/mapper.html?pdat=foo&
   data[0]=http://data_server/data10.txt&
   data[1]=http://data_server/data11.txt&
   ...

HTTP GET

http://foo.com/?k=v&k=v&...

http://short/AX482S
Set-Cookie: dataurls=[
  key1,http://short/AX488S,
  key2,http://short/JBSES8,...]

Figure 5: BMR mapper abstraction

URL Shortener
(mapper results)

reducer.jsMaster

URL Shortener
(final results)

http://bmr_server/reducer.html?pdat=foo&
   data[0]=http://short/AX488S&
   data[1]=http://short/KW8S5D&
   ...

HTTP GET

http://foo.com/?k=v&k=v&...

http://short/BW4HS7
Set-Cookie: dataurls=[
  key1,http://short/BW4HS7,
  key2,http://short/G9S2KF,...]

http://short/AX482S

http://foo.com/?k=v&k=v&...

Figure 6: BMR reducer abstraction

data into URLs) and an array of the URLs of the input
data for that worker. The mapper logic parses these HTTP
GET parameters, downloads the corresponding files using
XMLHttpRequest, and performs the desired map operation.

The mapper job communicates the intermediate map re-
sults to the master script using a URL shortening service
(e.g., bit.ly). The map results are a set of key-value pairs.
The BMR mapper encodes the key-value pairs as a “long
URL”, e.g., http://foo.com/?k1=v1&k2=v2. The long URL
is sent to the URL shortening service in exchange for a short
URL, e.g., http://short/AX482S. Because shorteners limit
the number of characters in a long URL, the BMR map-
per stores results across multiple URLs. Furthermore, the
mapper might designate URLs as belonging to di↵erent par-
titions or buckets to help the master schedule reducers. Fi-
nally, the set of short URLs is returned to the master script
along with a key value for each URL. The means of com-
municating the short URLs back to the master script varies
per cloud browser platform. For the Pu�n platform, we use
the browser cookie field. More details of this design choice
are discussed in Section 5.

Figure 6 depicts the BMR reducer abstraction. The BMR
reducer is very similar to the BMR mapper. However, in-
stead of retrieving its input from a data server, the inputs
to the reducer are shortened URLs that are expanded to
obtain the input data. In Figure 6, the final results are en-
coded as another set of long URLs. If the final results are
small enough, they could easily be returned as cookie data.

Cross-Origin Requests: Both the mapper and reducer
scripts perform XMLHttpRequest operations to retrieve and
store data. JavaScript executing in a Web browser is sub-
ject to the same-origin policy (SOP), which prevents the
script from making network requests to any origin (i.e., do-
main) except for the origin from which the JavaScript was
downloaded. For example, if mapper.js is downloaded from
foo.com, it cannot retrieve data from bar.com. This re-
striction can be overcome using cross-origin resource sharing
(CORS) [29]. To allow mapper.js to request data from an-
other origin, the Web server hosting the data must modify
its HTTP headers to either explicitly allow scripts from the
domain hosting mapper.js, or allow any domain (i.e., *).
Note that bit.ly uses CORS to allow JavaScript running
on any domain to perform network requests to its API.

4.2 Scheduling Jobs
Just as in MapReduce, BMR executes a mapper phase fol-

lowed by a reducer phase. To e↵ectively use cloud browser
and URL shortening service resources, the master script
must carefully partition the job. There are an arbitrary

number of complex heuristics that one can use to tweak and
optimize the master script scheduling. However, the goal
of this paper is to explore how to perform computations
within cloud browsers. Therefore, we assume: a) the input
is divided into a large number of equally sized files that are
accessible to the mapper and reducer JavaScript; and b) the
following constants are specified by the BMR user:

fs: size of each input file (in bytes)
fn: number of input files
bs: maximum data size for cloud browser (in bytes)
us: size of data in a shortened URL (in characters)
un: number of shortened URLs a worker can create

↵m : mapper compression factor for the BMR appli-
cation (↵m > 0)

Note that bs must be empirically derived for the target
cloud browser and the target BMR application; us is spe-
cific to both the BMR application and the URL shortening
service; and ↵m defines the compression factor from input
file size to the output of the mapper (discussed below).

Mapper Scheduling: In the mapping phase, the master
determines 1) the number of mappers to spawn, Mn, and 2)
the number of input files to pass to each mapper, Mf .

Cloud browsers are limited in the amount of memory al-
lotted to the worker. Scheduling must account for both the
memory required to load the input data and the internal
data structures to perform the processing. Because the to-
tal amount of required memory required by the worker is
dependent on the specific BMR application, the BMR user
must empirically determine bs. We assume the input files
are several times smaller than bs (e.g., fs is 2-5 MB).

As previously discussed, the key limiting factor is the
number of shortened URLs that must be created. If the
number of shortened URLs did not matter, the mapper
scheduling is straightforward:

Mf =

�
bs
fs

⌫
(1) Mn =

⇠
fn
Mf

⇡
(2)

However, as described above, URL shortening services such
as bit.ly use rate limiting. It is therefore to our advantage
to minimize the number of shortened URLs, since they are
long-lived and take up part of the URL shortening service
namespace. Recall that bit.ly can store 2022 characters
per URL (us = 2022) and is limited to 99 URLs per minute.
To avoid unnecessary delay, the BMR user can set un =
99; however, if multiple minutes wait in the mapper can be
tolerated, un can be set higher.

Note that when choosing un, the BMR user must ensure
that the mapper can transmit all of the shortened URLs



back to the master. Our proof-of-concept implementation of
BMR using Pu�n (Section 5) returns the shortened URLs
in a cookie value. Pu�n allows a maximum of 4053 char-
acters in the cookie, and the identifying portion of bit.ly
links is 10 characters, therefore un should be less than 400.
Depending on the size of the key, even less links should be
used. In the event that more links per worker are required,
a tree structure of shortened links can be created; however,
this results in extra processing.

Each BMR application has a di↵erent mapper compres-
sion factor ↵m specified by the user. Typically, ↵m > 1,
indicating that the output data is smaller than the input
data. For example, our mapper for word count (described
in Section 4.3) consolidates all instances of a word in the
input text. We use ↵m = 4.26 for word count in Section 6.
Using ↵m, we redefine Mf as follows:

Mf = min

✓�
bs
fs

⌫
,

�
↵m · un · us

fs

⌫◆
(3)

This modified equation accounts for the URL shortening ser-
vice storage limitation.

Reducer Scheduling: The scheduling for the reducer phase
is application specific. As a generic abstraction, we assume
that the mapper stores key-value pairs into shortened URLs
based on some partitioning strategy. For example, in word
count, a partition is a range of characters, and in distributed
sort, it is a bucket used in the bucket sort algorithm. When
the mapper returns the set of URLs, it specifies a key for
each URL. The master script schedules a reducer for each
key, passing it all URLs corresponding to that key. Note
that the number of keys or partition definition is passed as
the private data (pdat) to the mapper and also a↵ects the
number of URLs used by the mapper (i.e., using partitions
can lead to internal fragmentation).

4.3 Example Applications
To demonstrate the functional capability of BMR, we im-

plement three canonical MapReduce applications: word count,
distributed grep, and distributed sort.

Word Count: Word count determines how many times
each word appears is a large set of text. This task lends
itself well to the map and reduce abstraction. Traditionally,
the word count map function parses part of the dataset,
and for each word in the file, it prints, “word: 1”. The
reduce function tallies a count for each word in multiple
files. Our BMR mapper behavior di↵ers slightly. Since the
BMR mapper must maintain the words in memory before
“writing” them to the URL shortening service, it maintains
a count for each word in the input files. We also include
this reducer functionality within the BMR mapper to reduce
the storage overhead of the intermediate results. To encode
these results the BMR mapper creates a long URL similar
to the following: http://foo.com/?word1=5&word2=7&....
As discussed in Section 4.2, the mapper partitions results
into URLs to aid reducer scheduling. For simplicity, we use
ranges of letters. For example, if three partitions are used,
words are starting with a-h are in partition 1, i-p in partition
2, and q-z in partition 3. Note that multiple URLs will
correspond to each partition.

Distributed Grep: Distributed grep performs a pattern
match across many input files. In MapReduce, all of the
work occurs in the mapper, and the reducer is simply the

identity function. As such, our BMR implementation only
requires a mapper; executing the reducer in a cloud browser
provides negligible advantage. For distributed grep, the
BMR mapper performs a pattern match on the input file.
When a line i matches the pattern in file f , the mapper adds
“&f=i” to the long URL. For example, if the mapper works
on bar1.txt and bar2.txt, the resulting long URL will be
encoded similar to the following: http://foo.com/?bar1.

txt=45&bar1.txt=48&bar2.txt=34.

Distributed Sort: The popular TeraSort framework im-
plements a distributed bucket sort. The keyspace is divided
into n buckets (where n is provided as the pdat private data
passed to the BMR mapper). The mapper sorts the in-
put into the n buckets, but does not care about the order
within the bucket. In the reducer phase, each reducer is
given a bucket to sort. Since the buckets are ordered, the
total ordering is obtained. For our experiments, we use in-
put data generated by the teragen program included in the
Hadoop framework (version 0.19.0). teragen produces 98
character records. Each record consists of a 10 character
key and an 88 character value. Our BMR mapper only en-
codes the keys of the records due to the limited storage in
shortened URLs. We store both the key and the file number
in which the key originated, e.g., http://foo.com/?key1=
file1&key2=file2key3=file3. Including the file number
allows the master script to easily recombine the key with
the value in post processing. Note that we assume files are
sequentially numbered, therefore we only need to store the
file number and not the entire filename.

Of the three applications, distributed sort has the great-
est storage requirements. For each record in the input data,
we store a 10 character key and several digits for the file
number. Furthermore, the keys created by teragen include
several non-alphanumeric characters that must be URL en-
coded, thereby occupying additional space. As such, the
BMR user must define the compression factor ↵m and num-
ber of buckets n accordingly. In Section 6, we use ↵m =
2.513 and n =

⌃
No. of records

5000

⌥
. By ensuring that reducer only

shortens 5000 keys, we prevent issues with the bit.ly ser-
vice, which is rate-limited to generating 99 URLs per minute
per IP address, corresponding to slightly over 5000 keys.

5. IMPLEMENTATION
To demonstrate our ability to leverage computational re-

sources from cloud-based Web browsers, we needed to have
the ability to send these browsers to the URLs we desired,
such that our jobs would be properly executed. Based on its
overall high performance as shown in Section 3, we focused
our e↵orts on the Pu�n browser. Below, we describe how
we adapted Pu�n to work within the BMR framework.

In order to use Pu�n within BMR, we required an under-
standing of how Pu�n sends and receives messages, neces-
sitating knowledge of how messages are generated and their
format. Pu�n is an Android application, so our first goal
was to examine its operation to attempt to determine its
message format. We used the ded decompiler [15] to convert
the .dex file within the Android package into readable code.
This allowed us to reconstruct the program flow, which we
followed into the libpuffin.so library. From there, we used
IDA Pro to dissassembled the ARM binary.

Pu�n transmits its messages using SSL, thus simply in-
tercepting messages using tools such as wireshark would not



be successful in allowing us to understand their format. To
intercept tra�c in the clear, we modified libpuffin to dis-
able SSL certificate checking by inverting the logic for error
check at the time of certificate validation. This allowed us
to man-in-the-middle the connection with ease.

We wrote a parser after decompressing the cleartext in
order to reverse the framing protocols. Individual messages
form channels, which add flow semantics that make di↵er-
ing use of packed serialized objects and data dictionaries
depending on the type of channel created. As an example,
browsing a website leads to creation of a channel with a
packed name-value pair object with name service_id and
value view. Accessing cookie data registers a channel with
service_id storing a value of cookie store. Other channels
are used for activities such as video streaming. Data direc-
tories are used with view channels to store additional infor-
mation such as URLs and binary objects.

Pu�n used an unusual encoding scheme with internal
functions called Q encode and Q decode, though they have
no relation to the standard Q-encoding scheme. The encod-
ing appears to be an obfuscation measure that creates data
larger than its corresponding plaintext. Characters are ro-
tated deterministically and a counter added to their value
before converting them into their hex representation, which
is stored in ASCII. A checksum is included in a footer, likely
to detect request tampering. Data is returned in a pre-
rendered format from the Pu�n servers.

Using this information that we gleaned through our anal-
ysis of the Pu�n client, we wrote our own client that im-
plemented the functionality required for connecting to the
service. Our Lundi client creates channels for devices to
connect to, a cookie store, and views for any URLs present.
Because data is returned rendered as an image, we cannot
scrape the page, but we do set cookies for operations that
we perform and use those received cookies as intermediate
data stores which can be stored as bit.ly links. The Lundi

client is compact, written in under 900 lines of Python.

6. EVALUATION
In this section, we empirically evaluate the performance

of the BMR system presented in the previous sections. We
begin by describing our experimental setup. We then present
a profile of the BMR results and a comparison to Amazon’s
Elastic MapReduce (EMR) and Hadoop on Amazon EC2.

6.1 Experimental Setup
To evaluate BMR with the word count, distributed grep,

and distributed sort applications described in Section 4.3,
we implemented a mapper.js and reducer.js library for
each applications. The libraries consist over 1,000 lines of
JavaScript. Both the JavaScript libraries and input data
were hosted on the same Apache server for simplicity.

For each application, we performed tests on input data
of sizes 1 MB, 10 MB and 100 MB. The input data was
partitioned in multiple files, which varied per application.
For word count, we downloaded the top 100 most down-
loaded books from www.gutenberg.com/ebooks/. To obtain
100 MB input, we downloaded additional books from the
Top 100 most downloaded authors. For the experiments,
the book text was concatenated and split into files of 1 MB
in size. For distributed grep, we downloaded 140 MB of
IRC logs for the #debian channel on freenode.net, split-
ting the input into files of size 10 MB. We grepped for a

Table 2: Profile of BMR on Example Applications

Experiment⇤ # M U/M # R U/R Time
W.C. 1 MB 1 64 8 9.625 164.633s
W.C. 10 MB 10 24.7 8 17 178.859s
W.C. 100 MB 100 17.66 8 39 899.003
D.G. 1 MB 1 1 - - 17.701s
D.G. 10 MB 1 1 - - 18.680s
D.G. 100 MB 8 1 - - 26.596s
D.S. 1 MB 2 56 2 43 61.040s
D.S. 10 MB 20 58.8 20 42.05 279.390s
⇤
W.C. = Word Count; D.G. = Distributed Grep; D.S. = Dis-

tributed Sort; M = Mappers; R = Reducers; U = URLs; U/M

and U/R are averages.

specific user entering and exiting the channel. Finally, for
distributed sort, we used the Hadoop teragen program to
create random records. Due to BMR’s limitation on bit.ly

URL creation, we split the input data into 0.5 MB files.
As discussed in Section 4.2, the BMR user must specify

a cloud browser data size, bs, and a compression factor ↵m.
For all applications, we found bs = 1MB to be su�cient.
For the word count ↵m, we selected 10 books at random
and performed word count to determine the reduction in
text size. We used the average reduction: ↵m = 4.2673. For
distributed grep, ↵m is intuitively very large, as the user en-
tering and exiting events are only a small portion of the IRC
logs, and BMR only needs store the input file and line num-
ber. Therefore, since Equation 3 will not use ↵m, we con-
servatively set ↵m = 1000. Finally, for distributed sort, we
calculated a conservative upper bound on data compression.
For each 98 character record in the input, the distributed
sort mapper must store 39 characters: a) a 10 character
key, which may expanded to 30 characters due to URI en-
coding; b) three characters to URI encode the “=”; c) three
characters to store the file number; and d) three characters
to URI encode the “&” character that separates key-value
pairs. Therefore, we used ↵m = 2.513.

We execute each mapper and reducer in a separate worker
nodes (i.e., cloud browser server), up to 20 simultaneous
nodes, after which mappers wait for an open worker node.
To prevent rate limiting from the back-end Pu�n render
servers, we sleep for 5 seconds between launching map in-
stances on new nodes. Finally, to address the rate limita-
tions on bit.ly URLs during our experiments, mappers and
reducers randomly choose from a pool of 72 bit.ly accounts.

6.2 Results
BMR Results: Table 2 enumerates the results of the BMR
experiments for the three applications, listing the number
of mappers and reducers needed, and the average number of
URLs needed per mapper and reducer. Note that the exper-
iments were only performed once to limit the total number
of shortened URLs created; running them multiple times
does not change the distribution of data into mappers and
reducers. Due to the compression factor, distributed grep
passed the smallest amount of data, and therefore required
both the smallest number of mappers and reducers and com-
pleted the quickest. As one might expect, the URL based
communication between workers is a significant bottleneck.

Finally, the distributed sort 100 MB experiment tested
the limits of our data passing methods. To meet the bit.ly
rate limitation for reducers, we configured 200 buckets (n =
200). Returning 200 bit.ly links from the mapper exceeded
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Figure 7: Comparison to Hadoop and EMR

the maximum cookie size. Therefore, alternative techniques
such as a tree of bit.ly links are needed (see Section 4.2).

Comparison to MapReduce: To provide an intuition of
the performance of BMR, we executed the same jobs on both
Amazon’s Elastic MapReduce (EMR) and Hadoop running
on Amazon EC2. These experiments were performed on a
cluster of 11 32-bit m1.small instances, allocating 1 instance
for the master and using the other 10 as workers. Each
m1.small instance was allocated 1.7 GB RAM, 1 EC2 Com-
pute Unit, and 160GB storage. For EMR, data was stored
in an Amazon S3 bucket, and for Hadoop, it was stored us-
ing Hadoop DFS. We used the Hadoop 0.19.0 Java example
applications. Finally, for EC2, each m1.small instance cost
US$0.08 per hour, and for EMR it cost US$0.095 per hour.

Figure 7 shows the comparison between BMR, Hadoop,
and EMR for our test data. For distributed grep, BMR
surprisingly performed better than both Hadoop and EMR.
This is likely due to the relatively small amount of com-
munication that was required; only one mapper was needed
for 1 MB and 10 MB. However, in the word count and dis-
tributed sort experiments where substantially more data was
communicated between the map and reduce phase, BMR’s
performance su↵ered. However, one should note that BMR
was not designed to outperform existing MapReduce frame-
works. Given BMR’s limitations, it performed rather well.

Finally, given our small experiments, the cost savings were
small. Hadoop experiments individually cost less than US$0.03,
and the EMR experiments peaked at just under US$0.04.
However, when performed at much larger scale and over a
long period of time, BMR can amount to significant savings.

7. DISCUSSION
Recommendations for Cloud Browser Providers: By
rendering Web pages in the cloud, the providers of cloud
browsers can become open computation centers, much in
the same way that poorly configured mail servers become
open relays. The example applications shown in this pa-
per were an academic exercise targeted at demonstrating
the capabilities of cloud browsers. There is great poten-
tial to abuse these services for other purposes. We ran a
series of hashing operations on the BMR infrastructure to
determine how a password cracking implementation may be
deployed and found with Pu�n, 24,096 hashes could be gen-
erated per second, or 200 million per job. The infrastructure
could be used for far more sinister purposes as well such as

DoS and other amplification attacks, and pose ethical and
possibly legal concerns. When deploying a cloud browser
platform, providers should take care to place resource lim-
itations on rendering tasks. As discussed in Section 3, two
of the tested cloud browsers were capable of rendering for
at least an hour. However, stricter resource limitations are
not enough. A framework such as BMR can be used to link
together rendering tasks into a larger computation. To mit-
igate such parallel jobs, providers should rate limit connec-
tions from mobile clients. The most primitive form of rate
limiting is by IP address. However, NAT is used by some
cellular providers, thereby making rate limitation by IP ad-
dress impractical. As an alternative, users of cloud browsers
should be required to create accounts, and rate limits should
be placed on authenticated users. In our investigation of dif-
ferent cloud browsers, we observed that the Amazon Kindle
Fire’s Silk browser requires registration and sends a device-
specific private key as part of its handshake protocol with
the cloud-based renderers. Such a strategy is particularly
helpful in mitigating the ability to clone instances. Addi-
tionally, existing techniques such as CAPTCHAs can limit
the rate of creating new accounts.

Enhancing BMR: Our implementation of BMR was pro-
vided as a proof-of-concept. There are several aspects in
which it could be improved. First, the use of bit.ly became
an unintended bottleneck in the computation. We chose
bit.ly due to its popularity as a URL shortening service as
well as its easy to use APIs for creating short URLs. There
are several alternative URL shortening services that could be
substituted; however, these services likely have similar rate
limits. Therefore, using a combination of URL shortening
services may be more ideal. Furthermore, the use of short-
ened URLs may not be the best choice for applications that
have a low compression factor (↵m). BMR simply needs
some form of free key-value, cloud-based storage for com-
municating mapper results to the reducers. Services such as
Pastebin (pastebin.com) can store significantly more than
2022 characters. However, account creation and rate lim-
itation are still a concern. A second way BMR could be
improved is scheduling. Our scheduling algorithms are rela-
tively simple, and much more advanced scheduling strategies
have been proposed for MapReduce [1]. Finally, BMR could
be made to use multiple cloud browsers. Di↵erent cloud
browsers have di↵erent benefits. For example, Pu�n has
more computational abilities than Cloud Browse, but Cloud
Browse has more available memory. By using multiple cloud
browsers, BMR could schedule mappers and reducers based
on expected workloads.

8. RELATED WORK
Cloud computing creates a powerful new computing model

but carries inherent threats and risks. Numerous studies [18,
11, 13, 25] have surveyed and examined security and privacy
vulnerabilities in the cloud computing model from architec-
tural, technical, and legal standpoints.

Ristenpart et al. [24] demonstrate that it is possible to
map the internal cloud infrastructure and thus identify a
particular VM of interest and spawn another VM as the co-
resident of the target to mount cross-VM-side-channel at-
tacks. Somorovsky et al. [27] perform security analysis per-
taining to the control interfaces of both Amazon and Euca-
lyptus clouds, determining they can be compromised using



signature wrapping and XSS techniques. There have been
multiple attempts to exploit these vulnerabilities. For exam-
ple, Mulazzani et al. [21] successfully demonstrate an exploit
of the popular Dropbox cloud service, analyzing the client
and protocol to successfully test if a given file is present
within Dropbox and consequently breaking confidentiality.

The large computation platform provided by cloud ser-
vices such as Amazon’s EC2 allows for large-scale password
hashing and cracking. Moxie Marlinspike’s CloudCracker
service uses cloud services for cracking WPA passwords and
other encryption types [20], while Amazon’s GPU clusters
have been used to crack 6-character passwords in under one
hour [26]. Both of these services require payment to the
cloud provider; BMR is the first service to show how free
computation can be exploited through cloud browsing clients
to perform arbitrary operations.

9. CONCLUSION
This paper investigated the ability to use cloud based

Web browsers for computation. We designed and imple-
mented a Browser MapReduce (BMR) architecture to tie
together individual rendering tasks, then designed and ex-
ecuted three canonical MapReduce applications within our
architecture. However, these example applications were sim-
ply an academic exercise to demonstrate the capabilities of
cloud browsers, and form a preliminary investigation into a
new way of performing parasitic computing. Based on our
findings, we observe that the computational ability made
freely available by cloud browsers allows for an open com-

pute center that is valuable and warrants substantially more
careful protection.
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