Protecting Users From “Themselves”

William Enck, Sandra Rueda, Joshua Schiffman, Yogesh Sreenivasan,
Luke St. Clair, Trent Jaeger, and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory
Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802
{enck, ruedarod, jschiffm, sreeniva, Istclair, tjaeger, mcdaniel}@cse.psu.edu

ABSTRACT

Computer usage and threat models have changed drastically since
the advent of access control systems in the 1960s. Instead of mul-
tiple users sharing a single file system, each user has many devices
with their own storage. Thus, a user’s fear has shifted away from
other users’ impact on the same system to the threat of malice in the
software they intentionally or even inadvertently run. As a result,
we propose a new vision for access control: one where individ-
ual users are isolated by default and where the access of individ-
ual user applications is carefully managed. A key question is how
much user administration effort would be required if a system im-
plementing this vision were constructed. In this paper, we outline
our work on just such a system, called PinUP, which manages file
access on a per application basis for each user. We use historical
data from our lab’s users to explore how much user and system ad-
ministration effort is required. Since administration is required for
user sharing in PinUP, we find that sharing via mail and file repos-
itories requires a modest amount of administrative effort, a system
policy change every couple of days and a small number of user
administrative operations a day. We are encouraged that practical
administration on such a scale is possible given an appropriate and
secure user approach.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and protection —Access Con-
trols

General Terms

Security

Keywords

Access Control, Policy

1. INTRODUCTION

When access control was invented, computers were expensive
and limited resources. Each computer supported several users who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSAW’07, November 2, 2007, Fairfax, Virginia, USA.

Copyright 2007 ACM 978-1-59593-890-9/07/0011 ...$5.00.

shared not only the CPU, but also the storage of these machines.
Early access control systems were designed to protect the secrecy
and integrity of each user’s files from all the other users’ processes
on a single computer [16, 17]. The main concerns at this time were
that: (1) a user’s buggy program may modify the files of another
user and (2) a nosy user may be able to browse another user’s se-
crets by scanning her files.

The world of computing is very different now. Two major dif-
ferences are: (1) the increased variety and lower cost of computing
devices! and (2) the increased variety of threats against our com-
puting devices. First, the advent of many inexpensive devices has
created a situation where each user owns multiple devices, so there
is no other user to restrict. Second, new threats have emerged due to
the increased connectivity and ease of appropriating software that
results from that connectivity. Now, users must be more concerned
with the threat that their own processes may be malicious or have
a vulnerability that a remote attacker can leverage. For example,
a web browser client executes a variety of programs (e.g., plugins)
to process browser content, but all these programs run with the full
rights of the user (i.e., as users “themselves”). Some of these pro-
grams may be malicious, some may have vulnerabilities, but the
user must trust all these programs with all their data.

We claim that the access control problem of the early days of
computing has morphed into a new problem. In the current envi-
ronment, users are isolated from one another by default and the
main challenge is to manage the access of each user’s applica-
tions. Sharing among users does occur, of course, but we claim
that sharing can be modeled by a small number of mechanisms:
email, web, and version control repositories. Thus, we believe that
future access control models should leverage such natural isolation
of users to simplify policy, provide a reliable control of user’s data
based on applications, and enable limited sharing without compli-
cating policy significantly. Towards this end, we have developed
the PinUP access control system [7], a Linux Security Module
that binds permissions to applications, provides a rule language for
expressing how files are shared among applications, and treating
inter-user sharing as an exceptional case.

In the future, we envision that user administration should more
closely mirror sharing among isolated users. Our access control
infrastructure should be setup such that normal, predictable op-
eration is handled by system policy (i.e., policy specified by sys-
tem administrators and/or general-purpose policy rules). System
administrators may have to make some changes to system policy
to support variations in behavior, but these should be quite infre-

!The notion of a computing device is much broader than that of a
computer of the 1960’s and 1970’s. We consider any device that
may be programmed or whose software may be reconfigured, in-
cluding cell phones and PDAs, as a computing device.

quent. In this vision, users will have to administer exceptional
sharing, but this sharing is limited to a few, well-defined mecha-
nisms: email, web, and version control repositories. Only when
users apply these mechanisms do they need to consider the sharing
implications. Otherwise, user files are isolated from other users.
The PinUP system supports default isolation policies, so it is an
ideal candidate to implement this vision as we discuss.

The approach above raises the following question, “In a world
in which we approximate acceptable system behavior through user
isolation, how many exceptions to that approximation will occur
in practice and how difficult will it be to correct the policy given
that approximation?” This question highlights the key tradeoff in
the PinUP system. Inasmuch as the system can predict all uses of
a file, no user or system interactions are necessary. Where such
approximations are insufficient, the user is required to administer
the policies (e.g., using PinUP -supplied tools) that diverge from
the norm. Consider for example a user that creates a to-do list from
using an ASCII editor such as vi. Later, the user may want to
share that list with another user by emailing it to her or placing it in
a shared file repository. Such behaviors are not predictable in any
practical sense, and must be driven by user-specified interactions
with the policy system. Just how much interaction the user has with
the system is key to the usability of the system and access model.

The following sections attempt to answer this question by look-
ing at historical data in our laboratory to assess the number of inter-
actions administrators and users would have with the policy system,
and at some level attempt to understand the viability of the admin-
istrative model. By looking at the use of file repositories and email
behavior, we collect the number of operations that would require
unpredictable sharing with other users, thus requiring exceptional
policy changes. A central distinction that we make between system
and host policy is that the system policy requires the efforts of a
system administrator (i.e., someone not directly involved in the ap-
plication), whereas individual users change the host policy. In the
examination of email and repository modifications, we find that the
number of policy changes required of users and administrators is
not large: administrators must perform a policy change every 2.6
days for a lab of 65 people and users must update their policies
every 8.6 days on average. This data motivates optimism that an
access control system with the isolation of users at its core may
become a practical approach enabling effort to focus on how users
manage their own data among applications.

2. RELATED WORK

Recent operating systems provide Mandatory Access Control via
SELinux [14], AppArmor [15] and TrustedBSD [1]. However,
writing policies to describe the files and objects accessible from
a domain requires a deep understanding of access control and oper-
ating systems, a task far beyond the abilities of most users. More-
over, such systems are oriented toward protecting mainly system
files and not user’s files.

Specifying which files an application may access, known as sand-
boxing, is a common approach to isolate applications [5, 15, 9, 3,
12]. However, sandboxing techniques operate solely on filesystem
abstractions like files and directory paths. Ko et al. [10] attempt
to overcome such limitation by specifying policies of expected ap-
plication behavior. However, this approach is more appropriate for
developers, as the policies are slightly complex and require knowl-
edge about the expected behavior of the application. Similar to the
PinUP model, LIDS [12] allows files to be bound to specific ap-
plications, but the interface is restricted to system administrators.
Contrary to these systems, the goal of PinUP is specifically to offer
a user-oriented platform.

PinUP Appl Appl Appl Appl Appl Appl

User User

MAC System

Figure 1: PinUP provides control over user applications, as-
suming users are isolated by default and a mandatory access
control approach protects the system.

Lai and Gray [11] propose a mechanism to allow the user to spec-
ify the list of files an application may access. Unfortunately, the list
must be specified each time an application is started. TRON [2] of-
fers a similar approach, where a user’s initial shell has capabilities
for the entire home directory, and each user must explicitly create
child processes with less capabilities. A major drawback to both
Lai and Gray and TRON is that the user is by default responsible
for setting up the environment in a proper way. Additionally, these
operations must be performed every time an application is run. The
RBAC model was also applied to allow users to run application in-
side defined subdomains [8]. While this approach allows users to
specify the rights of each one of their subdomains only once, the
user is still responsible for the initial setting and then for switching
to the proper subdomain every time an application is run.

More recently, Polaris [18] extends Microsoft Windows allowing
users to sandbox an application by indicating the set of files that
will be accessed. Polaris uses “installation endowments” to pro-
vide applications capabilities to access system files, thereby focus-
ing policy specification on user files. In an effort to provide greater
flexibility, Polaris allows user to specify multiple sandboxes for dif-
ferent instances (pets) of the same application. Usability studies
indicate that this option leads to user error where the wrong pet is
selected, thereby compromising file security [6].

We claim these previous approaches make user administration
difficult because users have to work with filesystem abstractions to
sandbox applications. Our experience is that users only share files
via a small number of mechanisms, such as email and repositories.
Our goal is to determine whether user administration can be made
tractable if users are isolated by default and can only share files us-
ing these mechanisms. We examine the hypothesis using an access
control system called PinUP that isolates users by default. In our
evaluation we demonstrate the administrative effort system admin-
istrators must exert to configure the default, general policies that
PinUP provides for isolation and the administrative effort of users
for sharing files between users.

3. PINUP

In this section, we examine the PinUP system to make clear the
type of policy administration that results from PinUP’s approxima-
tion of system behavior. Figure 1 shows PinUP’s view of access
control. PinUP is not another discretionary access control (DAC)
approach, but rather, it is an overlay on a mandatory access control
(MAC) base. PinUP is designed under two key assumptions: (1)
the MAC enforcement, such as SELinux [14] and AppArmor [15],
protects the system and (2) interaction between users is not allowed
by default. First, since MAC enforcement protects the system,
PinUP only protects user data. Second, since users do not inter-
act by default (i.e., user interaction is not the norm), PinUP focuses

Make available to Compiler Read Compiler Create File
(gce) (Rules for

(Add permissions for gcc)

user: jdoe
appl: (gec, rw)

initial access

user: jdoe are applied)

appl: (vi, rw)U(gcc,r)

Editor Create File _ Upgrade Editor binargL File1
(vi) (Rules for (Transfer permissions _(x-€)
initial access ser ido from vi to vi')
are applied) Y el_'J oe user: jdoe
appl: (vi, rw) appl: (vi', rw)

(Require authorization and

Copy/Move

transfer permission to new file)

user: jdoe
appl: (vi, rw)

Figure 2: A summary of the administrative tasks for managing application access to files.

on managing access between each user’s own applications. Since
user interaction is infrequent, PinUP requires that the user or ad-
ministrators perform manual operations to allow sharing. In this
section, we examine the PinUP mechanisms, and in the next sec-
tion whether the assumption of infrequent, manual administration
appears feasible.

PinUP manages file access by controlling which applications can
access which files for each user. When a file is created, only the cre-
ating application has access to the file by default, but PinUP access
automation rules can describe how files created by one application
can be accessed by another and how files of certain types can be
accessed by certain applications. Changes to these PinUP policies
can be made, but every change requires per-use user authentication
(similar to the administrative interfaces of the OS X operating sys-
tem). In particular, user processes do not have the ability to mod-
ify PinUP policy. We detail the implementation of the PinUP sys-
tem in an extended technical report [7], and defer design issues to
that text.

We now illustrate PinUP via the example in Figure 2. Assume
that the user jdoe creates a file x. c using the editor vi . The
identity of the user, creating application, and other attributes such
as file extension are used to identify the PinUP policy to be applied
to the file, e.g., jdoe, vi, and .c. The policy explicitly states
which applications will be allowed to subsequently access that file.
In this case, vi is given subsequent read and write access. x.c
is a source file, so jdoe wants to make it read-only accessible to
a compiler through a command line tool. Note that such a policy
need not be manual—in PinUP policy rules can be stated that would
dictate that all . c files created by vi would made available to the
gcc compiler automatically. The compiler can then create a new
object file x .o that it can write and that can also be read by the
linker. Similar policy enforcement will occur as applications cas-
cade over data to consume and create protected files.

Also illustrated in Figure 2, PinUP presents a number of other
interesting design and implementation challenges. For example,
how one identifies applications and propagates their identity across
updates is key to ensuring correct policy enforcement. The issue of
attaching, tracking, and propagating PinUP polices associated with
user files is also daunting. This latter process is closely related to
label management in mandatory access control systems. However,
because of policy semantics and form, PinUP policy tracking re-
quires different machinery.

3.1 Host-Level Policy

At a very high level, PinUP exists to enforce a rudimentary intra-
application information flow policy. In this, there are two facets

of policy that are relevant to safe operation. First, the enforce-
ment must determine how the output files created by an application
should be automatically associated by other applications, e.g., the
. o object file output by gcc should be automatically readable by
the 1d linker. In another example, a . gdf Quicken file should only
be accessible via the Quicken program. The set of policy rules that
govern these permissions is a reflection of the workflows and envi-
ronmental practices of the user/host. Constructing these policies is
essential to closing the vulnerabilities presented by existing access
controls, and is an open problem. However, we expect that many
application usage policies will be common across all users.

Where workflows are not known or where the user needs to per-
form atypical manipulation of files, PinUP tools must be used to
modify the application associations. For example, a user who wishes
to burn an encrypted version of the Quicken file onto a CD would
need to modify the PinUP permissions to make associations be-
tween the files and the program that will manipulate them. Such

policy changes are implemented in the current system through pinmod,

which requires the user to enter her password before changing the
internal policy associated with a file.?

Note that these operations apply only to those files the user deems
to be of “high-value”. PinUP access automation rules will describe
which files are to be governed by PinUP. Other files not being gov-
erned by PinUP will only be subject to the normal system access
controls.

3.2 Distributed System Policy

Since users each have their own computing devices, enabling
sharing among users becomes a distributed systems policy issue.
Thus, in addition to some user administration to enable sharing,
some system administration will also be required. In this section,
we examine the types of system administration that the PinUP ap-
proach needs.

In the distributed case, each host in the distributed system would
apply a common, system-administered policy that states relation-
ships between applications and the rights they have to read, write,
and execute the file content. The only additional systemic require-
ment this extended model would place on the host is a service for
obtaining and updating the access policies to be enforced. Put an-
other way, an environment-wide policy would be obtained from a
central authority and would supersede the local user/host policy.

The distributed service would need to extend the model of soft-
ware identity to include versioning. For example, many different

This ensures that a malicious application cannot circumvent the
protections by launching the pinmod without the aid of user.

Table 1: Subversion Stability - the administrative operations observed over 114 weeks (each period was two weeks) within the SIIS
Laboratory at The Pennsylvania State University.

Operation Description Ops | Ops/Period | Post/Ops | Post/Ops/Period
NEW_REPO Creation of a Subversion repository, i.e., version || 169 2.9649 115 2.1698
controlled filesystem tree
REPO_CHANGE_AUTHS | Changing of user permissions on existing Subver- 0 0.0000 0 0.0000
sion repository
DEL_REPO_USER Remove user from permissions of a Subversion 15 0.2632 15 0.2830
repository
NEW_REPO_USER Add a new user to the permissions of a Subversion 53 0.9298 53 1.0000
repository
NEW_USER Introduce a new user into the Subversion system 65 1.1404 51 0.9623
DEL_USER Remove a user from Subversion system 1 0.0175 1 0.0189
CH_PASSWD User change of a Subversion password 2 0.0351 2 0.0377
DELUSR_GROUP Remove user from a Subversion group 0 0.0000 0 0.0000
ADDUSR_GROUP Add user to a Subversion group 0 0.0000 0 0.0000
NEW_GROUP Create a new Subversion group 2 0.0351 0 0.0000
DEL_GROUP Delete a Subversion group 0 0.0000 0 0.0000
| All | All operations observed on the Subversion system [| 307 | 53860 | 237 | 4.4717 |

versions (and patch levels) for a single editor within the environ-
ment may exist-and unlike hosts, such versions must be able to
access the file simultaneously. This would require an extension to
the semantic meaning of application identity (which in the host case
is simply a hash of the executable) to encompass version histories
and equivalences between versions.

In a general sense, the administrative model of this application-
oriented access policy is similar to traditional models. Like other
kinds of environmental policy, it is highly desirable to set global
invariant policy that states security relationships between files and
applications [13]. Secondly this system policy must identify the set
of hosts that may participate in access system and identify singular
hosts that have dominion over subsets of the governed data.

The host level policy operates as described above; all PinUP op-
erations that set or change permissions operate in substantively the
same manner, with the exception that a) permission changes must
be consistent with the system policy, and b) updates are synchro-
nized with the centralized policy database. In very much the same
way as permission changes in distributed file system are currently
implemented [19], all updates must be propagated to the other (in-
terested) hosts in the system.

4. EVALUATING ADMINISTRATION

The above discussion demonstrates the functionality of PinUP,
thus identifying where user and system administration may be pos-
sible. We envision that PinUP’s access automation rules will cover
nearly all application-level sharing, but users and system adminis-
trators will still need to direct sharing among users. Users them-
selves will declare the files to be shared with other users since this
cannot be predicted from application behavior. System administra-
tors will have to configure the means of sharing, system reposito-
ries, email, and web systems, to provide controlled sharing, where
required.

To better understand the viability of the PinUP administrative
model, the following sections attempt to quantify the amount of
effort required in such administration. To answer this question,
we look at historical data in our laboratory to assess the number
of interactions administrators and users would have with the pol-
icy system. The central distinction we make in the next two sec-
tions between system and host policy is that the system policy is
not malleable by the host and can only be modified by system ad-

ministrators. From an overall perspective, these two studies attempt
to understand how often an administrator will need to modify the
distributed system policy, and how often users will be required to
manage the host policy.

4.1 System Administrator Effort

The central (and often singular) means of sharing between users
and hosts within the SIIS Laboratory for over 2 years is through
Subversion [4]. As the central sharing mechanism, its access con-
trols represent the best approximation of a global system access
policy for our laboratory. Therefore, one can view the historical
changes within that policy as a model for the changes one would
expect to see for a global PinUP policy.

Subversion is a multi-user, distributed version control system.
As configured locally, this widely used suite of tools delivers con-
tent via webserver to hosts over a HTTP/SSL (ht tps) connection.
Each user communicates with the Subversion server via the svn
client, or alternatively through a web browser or OS-local file man-
ager application. Clients are authenticated using passwords/username
setup specifically for Subversion on the webserver and entered into
the Subversion client. Read and write authorizations for Subversion
content are assigned to users or groups. Groups are implemented
as managed collections of user lists.

The primary organizing resource in Subversion is a repository.
Allocated within an administrator-defined directory tree, each repos-
itory represents a unit of sharing that contains files and directories.
In our environment, we create repositories for each new project, pa-
per, or other administrative effort such as the laboratory web con-
tent. Users also have personal repositories to store local environ-
ments, e.g., startup files, personal tools, etc., which is used to relo-
cate user environments on many machines quickly. Users checkout
(obtain the current files), edit, add and delete files and directories,
and commit (push changes to repositories). Administrator rights
are also given to individual users via server-side configuration to
manage sets of users, groups, and repositories.

Table 1 enumerates the administrative operations occurring on
the Subversion webserver. Note that all of these operations require
the intervention of the administrator. In particular—as an oddity of
the environment—user password changes can only completed by the
administrator replacing the password in the htpasswd file on the
webserver. All other listed operations require the administrator to

10 F— .

Number of Operations

Jun 2005 Nov 2005

NEW_REPO —+—
DEL_REPO_USER --—-- _
NEW_REPO_USER - *
NEW_USER &

VO M\ e kd bag

Mar 2007

Sample Date

Figure 3: Frequent Operations - administrative operations occurring repositories over the 114-week sample period.

modify local configuration files on the webserver.

In order to assess the frequency of these operations, we evalu-
ated the evolution of Subversion configuration files on Subversion
over the 114 weeks since its introduction. The results that fol-
low describe the analysis (as implemented by custom processing
scripts which observed changes in configurations on consecutive
samples). Note that there is a startup period in which a large num-
ber of administrator operations are necessary; this included an ini-
tial configuration process that created repositories, added users, etc.
Therefore, we present two measurements, all operations and those
post-setup operations. The latter measurements attempt to assess
the steady-state operational activity by ignoring the first month of
activity in determining the total and average number operations per
two-week sample period.

Returning to Table 1, the operations bifurcate into those that are
(relatively speaking) used frequently, and those that are use infre-
quently or not at all. The most frequent operation is the creation
of a repository, where the administrator creates a new repository to
track a project—this is most often the creation of a directory to track
a new paper, proposal, or coding project. This is analogous to the
establishment of new efforts, which is likely universal to all similar
environments. Interestingly, we also see adding users to the envi-
ronment as a frequent occurrence. After initial setup and ignoring
the slow introduction of new students and faculty into the labora-
tory, this is largely a reflection of external collaboration. We have
active collaborations that use Subversion as the primary sharing
mechanisms with 14 different universities and laboratories. Such
is the nature of research, and we find the Subversion is an effective
metaphor supporting collaboration. Finally, we see frequent addi-
tion of users to repositories, and a less but noticeable frequency in
the removal of users from repositories.

Conversely, there are several operations that are used infrequently
or not at all. Principal among these is the use of groups. We initially
setup “administrator” and lab “insiders” groups, which essentially
never changed. Also, we found that repository permissions were
never changed. Users were universally given both read and write
permission, and no attempt was ever made to change them. Finally,
essentially no users ever change their password. This is likely due
to the difficulty of the interface, i.e., involving the administrator.

Figure 3 further illuminates the operational churn of the Subver-
sion configuration. Here, the figure shows the four most frequently
used operations (add repository, add/remove user from repository,
and add user to Subversion) as a function of time. Apart from the
initial configuration burst, the number of administrative operations
is exceptionally constant. At no time are there more than 16 opera-
tions in a two-week period. On average, an operation occurs about
once every 2.6 days (or 0.378 operations/day). Considering there
are around 170 repositories being used by 65 users, this seems like

an extremely stable configuration.

What does this suggest about the system policy in a PinUP -
style system? This characterization suggests that the system-level
view of sharing evolves constantly and very slowly. In this environ-
ment, users tend to control access not through fine-grained access
privileges, but through governance of access to entire “projects”.
Groups and low-level permissions were ignored in deference to the
simplest access policy available. Either users were trusted in the
project or they were not—no other access formulation was neces-
sary. This is encouraging to our thesis, as it indicates that admin-
istrators will not be needed to actively manage the PinUP policy—
global sharing policies are simple and stable.

Another interesting characteristic exposed by this study is that
rights are largely monotonically increasing. That is, users very
infrequently lose rights, but very frequently are given new rights
(e.g., added to a repository). It is telling that the only one user was
removed from the system, and only 15 times was a user removed
from a repository over the two-year period. These were the only
occurrences in system were rights were revoked. Thus, at least at
the system level, the closed world approach adopted by PinUP is
consistent with current behaviors (where the user increases rights
in exceptional cases).

4.2 User Administrative Effort

To estimate the effort needed to specify host policies, we exam-
ine the two most common modes of sharing used in the SIIS Lab:
(1) adding files to Subversion repositories and (2) emailing files as
attachments. In both cases, we observe a modest amount of user
administration of one policy change every 8.4 and 2 days for Sub-
version and email, respectively.

4.2.1 Repository Sharing

Because we seek to measure how often a user must change his
host policy, we need only count the number of Subversion opera-
tions that would elicit a host policy change. In Subversion, users
can invoke the svn add command to include a new local file into
a repository. In PinUP, this would require a change in host policy
to give the svn binary read access to the file. As this is the sole op-
eration that would require an update to the host policy, our analysis
examines just file additions.

Our analysis seeks to characterize the effort required for host
specific policy administration. In doing so, we investigate both raw
file additions, as well as larger batch requests that correspond to
a single semantic change. In general, the number of requests is
the same as the number of raw operations in the worst case, but in
practice the number of requests is much smaller.

We first examined individual file additions made to our SIIS Lab-
oratory Subversion repository. Figure 4 illustrates data from the

Number of File Addtions to Subversion Per Period

4500

Files —— '
4000 | Requests ------

3500
3000
2500

Count

2000
1500
1000

500

0 XX 322X

PYRVEVL AVEVEVERVE XXX HINHK.

Apr 2005 Jul 2005 Oct 2005 Jan 2006

Apr 2006

Jul 2006 Oct 2006 Jan 2007 Apr 2007

Periods (14 days)

Figure 4: Frequency of Subversion Add Operations - Number of files added to Subversion repositories observed over 114 weeks
(each period was 2 weeks) for all users within the SIIS laboratory at Pennsylvania State University.

collective log files for all users in all repositories in two-week in-
tervals over a two-year period from April 2005 to April 2007. As is
evident from the several large spikes (especially during 2007), the
sheer number of individual files added is large. Since we equate
each file addition to a manual change in the host policy, it would
appear that each user must perform a prohibitive number of host
policy updates. Even after averaging these results over all users,
periods of high activity could incur significant administrative over-
head.

Fortunately, the majority of addition operations are performed as
a single svn add operation. Looking again at Figure 4, we see
the line representing the number of requests initiated by users is
not only consistent, but promisingly small. For example, the period
around January, 2007 showed a spike of 4335 file additions, but
this only corresponded to a modest 92 requests. In fact, on average,
each user only issues 0.12 requests for additions per day with the
busiest users reaching 0.9 requests per day. By modifying PinUP
utilities to perform batch policy changes, each request would only
involve a single change to the host policy.

These usage patterns are indeed feasible in a PinUP system. While
sharing may result in a large number of raw operations, the amount
of actual user administration is reduced to a few requests. With so
few operations requiring a change to the host policy, users will only
be interrupted to change the policy at an infrequent and manageable
rate.

4.2.2 Email Sharing

Lab members also communicate frequently via email. In a sys-
tem using PinUP, email clients initially will not have access to the
files to be attached. This restriction is mainly to prevent a compro-
mised email client from sending files without proper authorization.
Similar to the Subversion case, the email client must be given ac-
cess every time the file is to be attached. In fact, even if we attach
the same file multiple times to different emails, we would want
to authorize access only for that particular email. To characterize
the administrative effort required for such fine-grained access, we
study the sent mailboxes of a number of SIIS lab members.

Figure 5 shows the number of email attachments of seven lab
members over a period of 18 months®. From the study, we observe
that, with minor exceptions, attachments are sent very infrequently.
On average, users send 1 email attachment every 2 days with high
volume users averaging 3 per day. This study confirms our intuition

*Note that some users were not in the University at the start of the
study, thus resulting in no attachments per user early in the study.

that the sharing via email is indeed very little and can easily be
administered using application-oriented access control policies like
PinUP with minimal policy changes.

Upon further investigation of our email data, we discovered a
semantic separation within the results. Users 4 and 5 have sent sig-
nificantly more attachments throughout the observed duration. In-
terestingly, users 4 and 5 are professors, while the others are gradu-
ate students. Such discrete classification indicates that a user’s role
significantly impacts sharing patterns.

We further classified users based on their roles to gain a bet-
ter understanding of this relationship. Figure 6 shows the number
of email attachment for each role: professor and graduate student.
From our data we observe that professors send significantly more
email attachments than graduate students. This is easily attributed
to their administrative role in the system (working with many stu-
dents on many projects and also departmental overhead) in con-
trast to students who are more confined to research oriented activ-
ities. This characterization suggests that sharing patterns are very
much driven by the overall role in the system. This further val-
idates our claim, as it indicates that normal users require only a
modest amount administrative effort for managing a system using
PinUP and even the high volume users require only a small number
of policy changes.

5. NEXT STEPS

This paper aims to show that the design of access control systems
no longer fits the current model of the isolated single user device.
The main characteristics of today’s systems are:

e Users run multiple applications that require distinct access
rights, creating an environment in which the user’s own pro-
grams may pose a threat greater than that of other user’s pro-
grams.

e Sharing of resources between users is limited and should be
treated as the exception rather than the rule.

To facilitate these factors, access control systems should prohibit
all access to files except where explicit permissions are granted to
applications designated by the user.

To test our hypothesis and the feasibility of our model, we ex-
plored the administrative overhead required to implement such a
system. We analyzed the behavior of a set of users in our lab and
identified the number of policy changes resulting from their actions.
We discovered, from a system-wide perspective, that the adminis-
trative operations needed for sharing are minor and the policy itself

User 1 ——

90 - User2
o) [User3 -
< 80 I Userd —g-
£ 70 - User5 --i--
5 User6 --©--
§ 60 [User7 --@-
< 50
2 4o0f
2]
E 30 !,l\'\ Pl
z 20 Cw
107
0 = &2
Jan 06 Mar 06 Jun 06 Aug 06 Oct 06

Mar 07

Periods (14 days)

Figure 5: Frequency of Email Attachments - the number of files shared a
was two weeks) for six individual users within the SIIS laboratory at Penn:

s email attachments observed over 78 weeks (each period
sylvania State University.

70 T
Students ——

60 - Professors ---%---

50
40
30

20

Number of Attachments

10 |

Aug 06 Oct 06
Periods (14 days)

Jan 06 Mar 06 Jun 06

Figure 6: Frequency of Email Attachments - the number of files shared a
was two weeks) for two different roles within the SIIS laboratory at Penns

was generally monotonically increasing, while the number of revo- [4]
cation operations remained minimal.

The administrative burden a user faces was also observed to be
small. Despite the large number of file additions we observed in
Subversion, users only issue one actual host policy change per 8.4
days on average. For email, we observed users required a daily
maximum of 3 operations on average depending on the user’s role.
As each administrative operation in our system would demand some
user intervention, the minimal cost a user would incur per day vali-
dates that our model of access control does not cause undue burden
on real users.

Current access control mechanisms no longer reflect modern day
usage models. As computing platforms shift to support single user
environments, the threat of harm has changed from malicious users
to applications running as the user. In a PinUP system, file ac-
cess is mediated on a per application basis. However, to support
interaction between users, policy exceptions are required. Our ob-
servations from Subversion and email logs demonstrate that the fre-
quency of these exceptions is small. In our future work, we intend
to develop mechanisms to further simplify the ad hoc policy update
process.

(]

[6

—_

[7

—

[8

—_—

[9

—

6. REFERENCES

[1] TrustedBSD. http://www.trustedbsd.org.

[2] Andrew Berman, Virgil Bourassa, and Erik Selberg. TRON:
Process-specific file protection for the UNIX operating
system. In Proceedings of the USENIX Technical
Conference, pages 165-175, 1995.

[3] S. Chari and P. Cheng. Bluebox: A policy-driven, host-based
intrusion detection system, 2003.

[10]

(11]

Jan 07 Mar 07

s email attachments observed over 78 weeks (each period
ylvania State University.

CollabNet. Subversion.
http://subversion.tigris.orgq.

Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton
Pu, Perry Wagle, and Virgil Gligor. SubDomain:
Parsimonious server security. In Proceedings of the 14th
USENIX conference on System administration, New Orleans,
Louisiana, December 2000.

Alexander Dewit and Jasna Kuljis. Aligning usability and
security: A usability study of polaris. In Proceedings of the
2nd Symposium On Usable Privacy and Security, 2006.
William Enck, Patrick McDaniel, and Trent Jaeger.
Protecting User Files by Reducing Application Access.
Technical Report NAS-TR-0063-2007, Network and
Security Research Center, Department of Computer Science
and Engineering, Pennsylvania State University, University
Park, PA, USA, February 2007.

Christian Friberg and Achim Held. Support for discretionary
role based access control in ACL-oriented operating systems.
In Proceedings of the second ACM workshop on Role-based
access control, pages 83-94, 1997.

Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A secure environment for untrusted helper
applications. In Proceedings of the 6th Usenix Security
Symposium, San Jose, CA, USA, 1996.

Calvin Ko, George Fink, and Karl Levitt. Automated
detection of vulnerabilities in privileged programs by
execution monitoring. In Proceedings of the 10th Annual
Computer Security Applications Conference, pages 134-144,
1994.

Nick Lai and Terence Gray. Strengthening discresionary
access controls to inhibit trojan horses and computer viruses.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

In Proceedings of the 1988 USENIX Summer Symposium,
pages 275-286, June 1988.

Linux intrusion detection system (LIDS).
http://www.1lids.org, accessed January 2007.
Patrick McDaniel and Atul Prakash. Methods and
Limitations of Security Policy Reconciliation. In 2002 IEEE
Symposium on Security and Privacy, pages 73-87. IEEE
Computer Society Press, May 2002. Oakland, CA.
National Security Agency. Security-enhanced Linux
(SELinux). http://www.nsa.gov/selinux.

Novell. AppArmor application security for linux. http://
www.novell.com/linux/security/apparmor/,
accessed December 2006.

D. M. Ritchie and K. Thompson. The UNIX time-sharing
system. The Bell System Technical Journal, 57(6 (part
2)):1905+, 1978.

M. D. Schroeder, D. D. Clark, J. H. Saltzer, and D. Wells.
Final report of the MULTICS kernel design project.
Technical Report MIT-LCS-TR-196, MIT, March 1978.
Marc Stiegler, Alan Karp, Ka-Ping Yee, and Mark Miller.
Polaris: Virus safe computing for windows xp. Technical
report, HP Laboratories Palo Alto, 2004.

A. Tanenbaum and M. Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, 2002.

