
Configuration Management at Massive Scale:
System Design and Experience

William Enck, Patrick McDaniel
Pennsylvania State University
{enck,mcdaniel}@cse.psu.edu

Subhabrata Sen, Panagiotis Sebos, Sylke Spoerel
AT&T Research

{sen,psebos}@research.att.com

sspoerel@att.com

Albert Greenberg
Microsoft Research

albert@microsoft.com

Sanjay Rao
Purdue University

sanjay@ecn.purdue.edu

William Aiello
University of British Columbia

aiello@cs.ubc.ca

Abstract
The development and maintenance of network device
configurations is one of the central challenges faced by
large network providers. Current network management
systems fail to meet this challenge primarily because of
their inability to adapt to rapidly evolving customer and
provider-network needs, and because of mismatches be-
tween the conceptual models of the tools and the services
they must support. In this paper, we present the PRESTO
configuration management system that attempts to ad-
dress these failings in a comprehensive and flexible way.
Developed for and deployed over the last 4 years within
a large ISP network, PRESTO constructs device-native
configurations based on the composition of configlets
representing different services or service options. Con-
figlets are compiled by extracting and manipulating data
from external systems as directed by the PRESTO con-
figuration scripting and template language. We outline
the configuration management needs of large-scale net-
work providers, introduce the PRESTO system and con-
figuration language, and demonstrate the use, workflows,
and ultimately the platform’s flexibility via an example
of VPN service. We conclude by considering future work
and reflect on the operators’ experiences with PRESTO.

1 Introduction

Configuration management is among the largest cost-
drivers in provider networks. Such costs are driven by
the immense complexity of the supported services and
infrastructure. For a large provider, thousands of en-
terprises with diverse services and configurations must
be seamlessly and reliably connected across huge geo-
graphic areas and rapidly evolving networks. Moreover,
the initial turn-up installation and subsequent support of
a single customer may span many organizations and sys-
tems internal to the provider. The stakes for the sup-
ported enterprise are extremely high: an outage may re-
sult in loss of business, delays in “getting to revenue”

since service turn up precedes revenue, failure to meet
contractual obligations, or disruption of key organiza-
tional workflows.

Given the complexity and stakes, it may be surpris-
ing that the common configuration management prac-
tice involves pervasive manual work or ad hoc script-
ing. The reasons for this are multi-faceted. From a
provider perspective, every customer is in some ways
unique. Though service orders have a lot in common,
many new installations made to realize those orders rep-
resent unique combinations of services and network con-
figurations. Interactions with customer networks, stale,
incomplete, or imperfect information, and service inter-
actions make both turn-up as well as ongoing mainte-
nance of configurations complex and error-prone pro-
cesses. Moreover, the devices in the network and defi-
nition of services they support change at a dizzying rate.
New firmware versions, customer requirements, or sup-
ported applications appear every day. Market demands
further dictate that the time-to-market for new services is
a critical driver of revenue: delays caused by tool config-
uration, extension, or development can mean the differ-
ence between profitability and loss. In short, there is an
unserved need in provider networks for tools that address
these complex and sometimes contradictory challenges
while constructing service configurations.

The PRESTO configuration management system de-
velops network device configurations from composed
collections of configlets that define the services to be
supported by the target device. Written in our general-
purpose hybrid scripting and configuration template lan-
guage, the PRESTO system extracts specific informa-
tion from external systems and databases and transforms
this information into complete device configurations as
directed by the PRESTO compiler. Extensive interac-
tions with diverse engineering teams charged with man-
aging operational IP networks led us to the conclusion
that, to gain wide buy-in and adoption, the PRESTO
language must adhere closely to the complex and often

low level configuration languages supported by network
device vendors (e.g., for Cisco devices, the IOS com-
mand language). PRESTO empowers network designers,
“power users” comfortable with native network device
configuration languages, and automates the unambigu-
ous translation of their design rules into precise network
configurations. Specifically, the PRESTO system gen-
erates complete device-native configurations, which can
then be downloaded into a device and archived by net-
work operators.

In this paper, we present the motivation, design, and
workflow of the the PRESTO configuration management
system. We outline the challenges faced by a large net-
work provider in installing and maintaining millions of
diverse devices for thousands of customers and orga-
nizations, and reflect on the failures of past network
management systems to address these needs. We out-
line the PRESTO workflow and configuration language
and demonstrate its features through an extended exam-
ple. Finally, we discuss future work and detail prelim-
inary experiences in deploying services in operational
networks.

To date, PRESTO has concentrated on developing
“greenfield” configs–configuration of new routers or ser-
vices in a new installation. Such an approach avoids
the inherent complexity of dealing with post-turn-up ma-
nipulation of fielded configurations resulting from soft-
ware updates, performance tuning, or other maintenance.
PRESTO’s role in the long-term maintenance of routers,
called “brownfield”configuration, is currently evolving.
While the body of the following work focuses on green-
field use, we revisit this latter objective and the chal-
lenges therein in our concluding remarks.

The PRESTO system evolved out of decades of expe-
rience in network management. Configuration manage-
ment is about more than just getting routing and filter-
ing correct. It must meld together many different ser-
vices that exhibit subtle interactions and dependencies.
Therein lies the challenge of configuration management
in a provider network—How do we glue together many
information sources of myriad organizations in real time
to build a functioning device configuration? Revisited
in the following section and throughout, it is the lessons
gleaned from our experiences in meeting that goal that
drive the PRESTO design.

The remainder of the paper proceeds as follows: Sec-
tion 2 discusses motivation and requirements; Section 3
overviews the PRESTO work flow; Section 4 describes
the language extensions provided by PRESTO; Section 5
incorporates these language extensions into a usable sys-
tem, recognizing that input data is rarely pristine; Sec-
tion 6 describes our experience using PRESTO for a real
application within an enterprise network; Section 7 dis-
cusses related work; and Section 8 concludes.

2 Configuration Automation

In this section, we discuss the need for automation by de-
scribing current best practices and their limitations. We
then describe the challenges an automated configuration
generation system must face in large provider networks.

A router configuration file1 provides the detailed spec-
ification of the router’s configuration, which in turn de-
termines the router’s behavior. In essence, the config-
uration file is a representation of the sequence of spe-
cific commands that if typed through the command line
interface determine the wide set of interdependent op-
tions in router hardware and software configuration. In
practice, this may represent thousands of lines of com-
plex commands, per router. These configuration files are
text artifacts – described in a device specific command
language, with a device specific syntax in a human and
machine readable format, in some cases in XML. It is
worth noting that a plethora of network devices beyond
routers, e.g. Ethernet switches and firewalls, rely on con-
figuration files of this type. To some degree, this state of
affairs reflects natural technology evolution and the mar-
ketplace – networks started (and often still start) small
and therefore often gravitated toward manual or (ad hoc)
scripted configuration.

Today’s configuration languages offer myriad com-
plex options, typically described in precise low level
device-specific languages, such as Cisco’s IOS command
language [8]. While the learning curve for such lan-
guages might be steep and the cost of inadequate learning
severe (small slipups may cause large network outages),
these languages are in extremely wide use for the entire
lifecycle of network management – starting with configu-
ration, but encompassing all other aspects, including per-
formance, fault and security management. The tack that
the PRESTO system takes is to leverage these “native”
languages, and empower the user of these languages to
enforce the precise translation of design intent into de-
tailed device configuration.

Our interactions with network designers revealed that
using templates to describe design intent is essentially
universal. That is, designers create parameterized chunks
of design configurations to describe intent. Accordingly,
PRESTO provides full and flexible support for template
creation in the native device configuration language.

2.1 Need for Automation
Decades of experience in network management have
taught us that manual configuration practices are limited
in the following ways, i.e., the configuration process is:
• costly, time-consuming, and unscalable: There is a sig-
nificant initial investment in the interpretation and docu-
mentation of network standards and device-specific in-

terfaces in developing any new service or support for a
device. The result of that investment is a “model” con-
figuration document (sometimes termed an Engineering
and Troubleshooting Guidelines (ETG) document) used
by enablers2 to manually configure each target device.
Typically performed by a large network engineering or-
ganization and depending on the complexity of the ser-
vice or device, this process can take many person months
of effort to complete and is an expensive process. The
subsequent manual application of the model configura-
tions to customer networks is also costly—some large
customers may have tens of thousands of network ele-
ments, and applying a new configuration to even a frac-
tion of them verges on the intractable.

• prone to misinterpretation and error: Even under the
best of circumstances, engineering guidelines will not be
perfect. Because network designers cannot anticipate all
possible target environments, the guidelines are neces-
sarily ambiguous, sometimes imprecise, and often sub-
ject to multiple interpretations. Thus, different enablers
may interpret the same rules differently or adopt differ-
ent local conventions. Differences between interpreta-
tions can and often do result in configuration mismatch
errors. Making matters worse, while some errors might
be easier to detect, others might have no immediate ef-
fect. These latter configuration problems are the most
vexing, as they may become manifest at periods of high
load (possibly the worst possible time) or introduce un-
detected security vulnerabilities.

• fraught with ambiguous, incorrect, changing or un-
available input data: Configuration information is not
only spread across multiple data sources, but may be in-
complete and imperfect. For example, customer order
databases may not reflect the latest needs of the customer,
e.g., order updates may only exist as emails to human
contacts and may not quickly (or ever) be reflected in a
database. As another example, information such as IP
address assignments may be missing at the time of initial
configuration. Finally, rules might be ambiguous. We
have, for example, encountered examples where a partic-
ular service mandated that a site may have dual routers
with ISDN backup, but it was not obvious which router
must be the backup and which the primary.

2.2 Requirements

The pervasive practices and technical organizational
problems detailed above makes automation in provider
networks difficult. These issues lead to the following re-
quirements, i.e., the configuration process must:

• Support existing configuration languages: While there
have been many prior strong efforts at automating config-
uration generation, most have focused on developing ab-

stract languages or associated formalisms to specify con-
figurations in a vendor neutral fashions, e.g., IETF stan-
dard SNMP MIBs (Simple Network Management Proto-
col, Management Information Bases) [5], and the Com-
mon Information Model (CIM) [9]. These information
models define and organize configuration semantics for
networking/computing equipment and services in a man-
ner not bound to a particular manufacturer or implemen-
tation. However, such generalized abstractions invari-
ably introduce layers of interpretation between the spec-
ification and device. Gaps open between general abstract
specifications and the concrete language of specific de-
vice configuration. It is very difficult to avoid extending
or creating specialized common models to describe the
realities of today’s rapidly evolving devices and services.
The artifacts of efforts to create standards or libraries of-
ten lag the marketplace. In truth, network experts often
do not have the time or inclination to understand such
abstractions, and today nearly universally find that work-
ing within native configuration interfaces is much more
efficient for initial installation and later maintenance.

• Scale with options, combinations, and infrastructure:
Customer configurations are dependent on, in particular,
selected service offerings, devices, firmware revisions,
and local infrastructure. For example, consider a site
connecting to a provider backbone. The seemingly sim-
ple customer order has many options—does the customer
require multiple routers to connect to the backbone or
just one? Should each have multiple links or one? Fur-
ther, each router may have several WAN (Wide Area Net-
work) and LAN (Local Area Network) facing interfaces,
and each interface may admit specific naming conven-
tions that depend on the router model and the WAN card.
The physical local infrastructure (e.g., routers and net-
work topologies), will often have major impact on the
workflow and content of the configuration.

• Support heterogeneous and diverse data sources:
Putting together a router configuration involves collect-
ing all necessary router configuration information. Such
configuration information may not be all available in
one central repository at the time the information is
needed, but rather maybe distributed amongst a variety
of databases, which are populated by upstream work-
flows. Take, for example, the customer order database.
The customer information may itself have arrived at dif-
ferent times, and may be split across various forms. In
large operational networks, information regarding cus-
tomer orders and the resulting router deployment and
maintenance is potentially spread across various systems
spanning many internal organizations. An automated
configuration system has to be cognizant of the diver-
sity of information sources (and quality of data). Impor-
tantly, these data sources typically have their own persis-

Batch request
of related
routers

(short lived)

Parse inputs and
merge with

supplementary data

Tabular
Supplementary

Data
(long lived)

Provisioning
Database

(short lived)

Template
Library

(long lived)

Provisioning
Generator
(per router)

Router
Configuration

Text Files

Application Specific
Data Model

Input

Output

Application Specific
Master Template

Figure 1: PRESTO Workflow

tent databases (each representing large investments), and
a configuration management solution faces a huge real-
world hurdle if it were to attempt to replace or replicate
these databases, or even add a new persistent database
rather than extend an already existing one. To the great-
est extent possible, a configuration management system
should strive to be stateless if it is to succeed in diverse
operational environments.

3 PRESTO Overview

Two kinds of users interact with PRESTO—domain ex-
perts and provisioners. Domain experts initially cod-
ify the configuration services and options in active tem-
plates. These are the PRESTO equivalent of the ETG,
where execution of the “active” template by the compiler
directs the interpretation of the service definition for a
particular environment. At installation time, provision-
ers obtain necessary configuration information from cus-
tomers and other sources, that, when combined with the
templates written by the domain expert, produce the end
router configuration.

A more complete description of the PRESTO work-
flow is presented in Figure 1. In practice, deployment is
a multi-stage process including requirements reconnais-
sance, initial staging configuration creation, and device
turn-up. PRESTO is concerned with the second part of
the process, the creation of the configuration. The con-
figuration creation process begins with a batch of new
configuration requests resulting from a network upgrade
request or customer order. The requests are submitted
to PRESTO as a collection of specification inputs, where
the relevant environment data is provided as direct input
or extracted from supplementary inventory and configu-
ration databases. The data is cleansed and projected into
a service or device (application-specific) data model cre-
ated for the target configurations. Finally, an active tem-
plate is executed for the set of specified target devices
resulting in complete device-native configurations.

Note that these active templates, called configlets, may
conditionally or deterministically import arbitrary other
templates or extract data as needed at compile time to
complete a configuration. It is this “composition by re-
cursive import” and dynamic data extraction from exter-
nal sources that allows PRESTO to deal with the poten-
tially huge number of configuration options for a config-
uration.

PRESTO adopts automation to the extent possible, but
allows for human intervention where needed. The pro-
cess of mining and preparing configuration information
is decoupled from the process of combining input data
with configlets to produce configurations. Hence, as dis-
cussed further in Section 5.1, PRESTO can be viewed as
a 2-step process, each of which is automated, but with
manual intervention in between the steps. The first step
involves tools that can, in an automated fashion, parse
disparate databases to extract necessary configuration in-
formation. The information so produced may potentially
be inspected by an enabler, overridden if necessary, and
augmented with manually supplied missing information.
The cleansed information is then the input to the second
stage of the automated processing to produce the config-
uration.

4 Active Template Language

The PRESTO template language lays out the foundation
over which the rest of the system is built. PRESTO does
not define a new language, but rather a language exten-
sion. This allows domain experts to leverage knowledge
of flexible native configuration languages, e.g., Cisco
IOS, while creating useful abstractions, defining ser-
vices, which take the form of configlets in PRESTO.
Interestingly, this is in direct opposition to traditional
network management interfaces which provide a single
abstraction to which any policy would have to adhere.
PRESTO provides the following key characteristics:

• Data Modeling: The data used to configure a network
device is derived from a complex calculus of data from
many diverse sources. Hence, dealing with this requires
some means of organizing and accessing the data. We
use the most natural choice for this task: a relational
database. The schema of that database, called a model,
is specific to the services and devices to which it applies,
i.e., each collection of configlets works in tandem with a
model defined by the domain experts.

• Rich Template language: A straightforward view of
templates is that this merely involves direct substitution
of “variables” by user-supplied inputs. For example,
an architect may insert a variable for IP address infor-
mation, that is then supplied by inputs from the user.

However, more complex operations and data manipula-
tions are needed. For example, based on whether or not
a router has a particular feature, the configuration may
need to omit or include executable script code. Again, a
device may have one or more interfaces, and configura-
tion blocks may need to be created for each (of possibly
many) interfaces. Moreover, the number of interfaces
to be configured may only be available at run-time. In
short, more sophisticated constructs than purely variable
substitution are needed, e.g., variable expressions, con-
ditionals, and loops.

• Support for Template Decomposition and Assembly:
PRESTO provides support for the architect to write mul-
tiple smaller templates targeted for very specific ele-
ments of a configuration, i.e., services. There are sev-
eral advantages to such an approach. First, supporting
multiple smaller templates simplifies creation and main-
tenance. Second, this allows for templates to be written
by multiple designers based on their expertise. This is
analogous to programming modularity, where each pro-
grammer or group can be develop and maintain a part
of the larger system. In the case of PRESTO, for exam-
ple, a designer may better understand how to deal with
various WAN interfaces, while another may better un-
derstand issues with BGP configuration. Third, breaking
templates down promotes reusability, as there is the po-
tential to create template libraries, and reuse them across
multiple applications.

Before discussing specific details, we provide an ex-
ample scenario to aid in the understanding of language
constructs and design motivations. Consider the config-
uration of a gateway router. The gateway connection
may have one or more external connections. If there
are multiple connections, they may be dispersed across
multiple routers. Hence, these routers require config-
uration knowledge of the other routers participating in
the gateway connection, e.g., IP addresses, to coordinate
failover, e.g., HSRP [17]. The template language must
support these relationships between connections on one
router and between routers.

We now discuss each part of the template language in
turn. After discussing the core language concepts, we
introduce additional language features that enable better
software engineering practices.

4.1 Data Model
The PRESTO template language revolves around the
data model. The templates require access to small
data chunks describing router properties. Furthermore,
multi-router relationships dictate a need to perform quick
lookups for peer specific information. Such a capabil-
ity is required for instance when configuring one router

(eg., a spoke) involves extracting information for another
router (eg., the hub). A relational database provides
just this capability: router properties are stored in table
fields and accessed as variables; peer router properties
are queried by specifying the router hostname. Hence,
the data model becomes a database schema. We refer
to this database as the provisioning database and provi-
sioning relational database schema where necessary to
remove ambiguity.

The schema definition is application dependent. Each
application has different requirements on data accessibil-
ity. It is no surprise that defining the schema is the most
delicate part of applying PRESTO to a new application,
hence complete flexibility is required. Despite the sup-
ported flexibility, past experience has resulted in a few
recommended guidelines. The data model should con-
tain a ROUTER table indexed by a globally unique identi-
fying value, e.g., the router hostname. One row will exist
for each router in a provisioning request. The ROUTER
table should contain the bulk properties; however, when-
ever multiple instances of a property occur, a new table
should be created. For example, multiple LAN or WAN
interfaces are semantically equivalent. Sub-router tables
should use a multi-column primary key consisting of the
ROUTER table index and a unique identifier, e.g., inter-
face number. Upon querying the database for all LAN
interface records matching a specific router hostname,
the template language produces an interface loop. For
example; suppose LAN is a table holding all LAN-facing
inputs. Then

SELECT * FROM LAN WHERE ROUTER=THIS ROUTER

selects each LAN-facing interface on a given router. It-
eration specifics and syntax are discussed below.

4.2 Variable Evaluation

Variable substitution is integral to any template language;
PRESTO is no exception. Variables are defined by the
data model. Templates gain access to variables by query-
ing the provisioning database. The returned record de-
fines a variable namespace, or context3, used to access
the variable, e.g.:

<CONTEXT.VARIABLE>

Variables of this form are directly substituted in the tem-
plate text.

Templates are written to produce a configuration file
for one router. PRESTO begins template evaluation by
querying the ROUTER table in the data model for the row
corresponding to the current router. The returned record
populates the ROUTER context, which consequently al-
lows templates to use ROUTER variables at any point.
The template creates new contexts by making a new

database query; however, those variables are only acces-
sible within the defined context scope. When a query re-
turns multiple records, the template code within the con-
text is repeated, producing a loop. For example, SELECT
* FROM LAN WHERE ROUTER=THIS ROUTER has the effect
of configuring multiple LAN-facing interfaces.

4.3 Iteration
The PRESTO template language simulates iteration by
executing database queries that return multiple records.
The template designer creates a data driven loop by
defining a new context name, an SQL-like query, and a
scope. Each row returned by the query produces an iter-
ation. For example:

[INT:SELECT (*) FROM (WAN_INTERFACE) WHERE
(WAN_INTERFACE.HOSTNAME=<ROUTER.HOSTNAME>)]

interface serial0/<INT.SLOT>/<INT.PORT>
bandwidth <INT.BANDWIDTH>
ip address <INT.IP> <INT.MASK>

!
[/INT]

Here, INT is the name of the new context. The statement
associates the INT context with the record returned by
querying the WAN INTERFACE table of the provisioning
database for all fields ((*)) related to the current router
hostname (note the use of <ROUTER.HOSTNAME> in
the query). The text within the INT context scope, i.e.,
all text between the query statement and the context clos-
ing statement, [/INT], is repeated for each returned
record. Field names from each record are accessible as
variables within the context, as shown. Note that new
context definitions can be arbitrarily nested, but they
cannot define scopes spanning multiple parent scopes.
That is, the nested context’s closing statement must oc-
cur before its parent closing statement. This constraint is
consistent with loop structures in common programming
languages.

4.4 Conditional Logic
Configuration statements are commonly dependent on
router properties. For example, E1 (a standard widely
used in Europe) line cards required slightly different in-
terface specification than T1 (a standard widely used in
the US) cards. The PRESTO template language supports
the inclusion and omission of configuration options with
conditional statements. All conditionals have a label,
condition and scope, in general:

[COND LABEL CONDITION]
... template text
[/LABEL]

COND indicates a conditional statement; LABEL defines
a label; and CONDITION contains relational operators

that dictate if the template text between the condition
statement and the closing statement, [/LABEL], is in-
cluded. The template text can contain static strings, new
contexts, or even more conditionals. The CONDITION
itself supports arbitrary complexity of Boolean logic.
Statements can be simple:

("<ROUTER.HAS FEATURE X>" eq "YES")

or more complex logic:

(("<ROUTER.HAS FEATURE X>" eq "YES") &&
(("<ROUTER.HAS FEATURE Y>" eq "YES") ||

("<ROUTER.FEATURE Z>" ne "BASIC")))

4.5 Data Transformation

Configuration statements commonly require a transfor-
mation of an input variable. For example, an interface IP
address may be specified as IP and mask, i.e., x.x.x.x/y,
but the router configuration language requires the IP and
mask coded separately, i.e., x.x.x.x z.z.z.z. In another
case, the template designer may need to configure the
network address corresponding to the input value. To
accommodate such requirements, the PRESTO template
language provides a mechanism for arbitrary extension.

A function added to the language interpreter module is
referenced within a template as a context, variable, func-
tion, and argument:

<CONTEXT.NEW VARIABLE:function(args)>

Upon execution, arguments are evaluated (if they are
variables) and passed to the function. The function per-
forms a specific manipulation and returns the result to a
new variable in the specified context. The new variable’s
value is inserted into the template text, and it’s value is
retained for later use within the context.

To aid template design, the PRESTO template lan-
guage contains a core set of application agnostic func-
tions. Some functions provide generic computation
abilities, e.g., calc() performs simple arithmetic,
sbsstr() returns a substring specified by an offset
and length, and matchre() provides regular expres-
sion substring matching. Other core utility functions per-
form useful conversions on common network values such
as IP address. For example:

<INT.NETIP:computeOffsetMaskIP(<INT.IP>,0)>

computes the network address of an IP specified in
x.x.x.x/y form. The function, however, can calculate any
offset of the IP, a useful feature when network policy dic-
tates devices on specific offsets, e.g., the gateway is com-
monly .1. Realizing a new PRESTO function involves
including its code in the PRESTO language interpreter.

4.6 Hidden Evaluation

Configuration policy occasionally requires values result-
ing from complex computations. While additional do-
main specific functions provide ample mechanism, tem-
plate designers are encouraged to keep domain knowl-
edge within the templates themselves. The motivation
is twofold. First, this reduces bloat of the core lan-
guage. Second, as function definitions require program-
ming, and most template designers do not possess the
necessary skills, or are simply unwilling, to create new
functions. Therefore, we have added only a small num-
ber of generic primitive operations to the core language
in an application.

As described to this point, the template language is not
conducive to performing complex computation within
the templates themselves. All functions return text that
is inserted into the end router configuration. Multi-step
computations therefore become difficult, if not impossi-
ble. To overcome this issue, the language supports hid-
den evaluation:

[EVAL LABEL noprint]
... template statements
[/LABEL]

Statements within the LABEL scope produce no output.
Computation within EVAL blocks is not limited to

simple multi-step functional transformations. In prac-
tice, we leveraged the hidden evaluation interface to pro-
vided a multitude of features. For example, database
SELECT queries were used to lookup values in supple-
mental data tables. Values were assigned to higher level
contexts, e.g., ROUTER, and used throughout the tem-
plate. The EVAL blocks also proved useful to determine
values that depended on multiple conditionals. The con-
ditional logic was performed once, and the value was
used many times thereafter.

4.7 Template Assembly

Managing one large template becomes unwieldy. Soft-
ware engineering experience recommends modular code.
Templates are no exception. Using many small tem-
plates, or configlets provides many beneficial side
effects. It allows a template designer to concentrate on
one feature at a time. For example, a configlet can be
written for each network access type used for the WAN
interface of a router. Later, depending on the router pro-
visioning data, the correct configlet is chosen. By in-
cluding configlets on demand, complicated conditional
logic is avoided. Additionally, as configlets are only in-
serted where applicable, they can be written with certain
assumptions in mind. This reduces complexity within
the configlets themselves. Finally, as configlets can in-

clude other configlets, the template designer can exploit
commonality between configlets.

PRESTO stores all configlets in a template library.
Configlets can be included at any point. The language
provides a special syntax for including configlets:

[INCLUDE FROM (FEATURE) WHERE
(FEATURE.TYPE=SOME_TYPE)]

In our above example, the correct WAN interface con-
figlet is included using the <ROUTER.ACCESS TYPE>
variable:

[INCLUDE FROM (WAN) WHERE
(WAN.ACCESS_TYPE=<ROUTER.ACCESS_TYPE>)]

4.8 Example Configlet

Once the data model and configlet organization are de-
termined, writing the configlets themselves is straight-
forward. We now provide a quick example to show how
each of the language primitives come together. Consider
a network topology where the Internet edge has two ac-
cess lines, each connected to one router, and the two
routers establish load sharing of in and outbound traffic.
The most complex configlet will define the WAN routing
protocol. Figure 2 provides an example.

The example begins by including the interface con-
figlet defining the back to back connection between the
two routers. Multiple connection types may be sup-
ported. Instead of using a large conditional statement
to pick the right interface definition, the INCLUDE state-
ment allows the relational database to perform the con-
ditional logic and simplify the code the domain expert
must specify.

The BGP block defines the WAN routing protocol con-
figuration. Here, a SELECT queries for network ad-
dresses specific to the peer router. The configlet also
performs a domain specific sanity check that warns the
enabler if the two routers’ back to back IP address are
in different networks. This check is placed within and
EVAL block to keep warning text from leaking into the
end configuration. Finally, the SELECT query is also
used to determine information specific to the WAN con-
nection. Here, the data model specifies that WAN in-
terface specifics be placed in a separate table. The con-
figlet selects the correct table row using the HOSTNAME
foreign key. The Cisco IOS network and neighbor
commands require a translation of the available informa-
tion, therefore the computeOffsetMaskIP() func-
tion is used. In this case, the remote peer is always the
second IP in the network, therefore the domain expert is
able to code the neighbor’s IP directly using the offset
function.

%% Configure Back-to-Back Interface to Peer Router
[INCLUDE FROM (B2B) WHERE (B2B.TYPE=<ROUTER.B2B_TYPE>)]
%% Define the BGP configuration
router bgp <ROUTER.LOCAL_ASN>
network <ROUTER.LOOPBACK0> mask 255.255.255.255

[PEER:SELECT FROM (ROUTER) WHERE (ROUTER.HOSTNAME=<ROUTER.PEER>)]
%% Ensure the peer is in the same network
[EVAL B2B_CHECK noprint]
[COND WRONGNET ("<ROUTER.B2BNET:computeOffsetMaskIP(<ROUTER.B2B_IP>,0)>" \

ne "<PEER.B2BNET:computeOffsetMaskIP(<PEER.B2B_IP>,0)>")]
<ROUTER.WARNING:templateWarning(<ROUTER.HOSTNAME> and <PEER.HOSTNAME> different B2B Net)>
[/WRONGNET]
[/B2B_CHECK]
network <PEER.NETIP:computeOffsetMaskIP(<PEER.B2B_IP>,0)> mask 255.255.255.252
neighbor <PEER.B2B_IP> remote-as <ROUTER.LOCAL_ASN>
neighbor <PEER.B2B_IP> next-hop-self

[/PEER]
[WAN:SELECT FROM (WAN) WHERE (WAN.HOSTNAME=<ROUTER.HOSTNAME>)]
network <WAN.NETIP:computeOffsetMaskIP(<WAN.IP>,0)> mask <WAN.MASK:computeMask(<WAN.IP>)>

%% The gateway is the second IP in the subnet (for this example)
neighbor <WAN.GW:computeOffsetMaskIP(<WAN.IP>,1)> remote-as <WAN.REMOTE_ASN>

[/WAN]
no auto-summary

!

Figure 2: Example configlet defining the WAN routing protocol of a two-line two-router configuration

5 The PRESTO System
The template language and data model provides a mech-
anism to describe configuration policy; however, it must
be incorporated into a usable system. In an ideal world,
an engineer receives a request for a group of related
routers with all required input information available and
correct. This would allow a straightforward application
of the data model and templates to act upon inputs. As
shown in Figure 1, the per-request input data is parsed
and merged with tabular supplementary rules to create a
one time database. Then, for each router in the request,
a master active template is executed by the provisioning
generator. This master template includes and executes
appropriate configlets according to the input data, result-
ing in a completed configuration text file.

Unfortunately, the information required to configure
a router is not always readily available. In large opera-
tional networks, the input data for the configuration task
spans the outputs of multiple upstream workflows, which
may arrive at different points in time. It is therefore im-
portant to be able to work with such partial information
flows and to able to handle any inconsistencies across the
flows. In such a scenario, ubiquitous flow-through or full
automation becomes extremely difficult to realize. Ac-
cordingly, PRESTO provides hooks to overcome these
difficulties, when and where they arise.

5.1 PRESTO Architecture
PRESTO achieves nearly full automation using a 2-step
process, see Figure 3. The goal of automation is to mini-
mize user actions. PRESTO minimizes manual processes
in two ways. First, it handles bulk requests. This stream-

lines the process of creating the initial router configura-
tion code. Second, it requires only one point of user in-
teraction at which point users provide the most minimal
effort to allow automation to complete. In PRESTO, data
processing proceeds in two steps, with user integration
capabilities made available between step 1 and step 2.

Specifically, PRESTO uses a 2-step architecture to re-
quest user input at the most ideal moment. The process
begins with the submission of a batch request to step 1.
Step 1 pulls together and parses information from avail-
able input data sources for the batch request. The output
of step 1 is the complete and unambiguous information
needed to configure all routers in the batch. The role of
step 1 then is to normalize and tabulate the input infor-
mation and, if possible, apply defaults or inference rules
to fill in missing information. Where defaults or infer-
ence are applied, the step 1 output will flag or annotate
the output, for (optional or mandatory) user inspection.
In practice, we found that inference rules include many
types of calculations, for example, ranging from assign-
ing incremental BGP AS prepend values to selecting in-
terface ports for network connections. The result is pre-
sented to the user for validation in tabular form. The
user is then given the option to change certain of the data
to meet customer requirements (which we found some-
times change faster than the ordering information sys-
tems can be updated), e.g., changing interface cards, and
the batch request is submitted to step 2. Step 2 executes
the PRESTO engine described in Figure 1, combining
complete input information with templated policy infor-
mation as described above, to produce the configuration
file for each router in the batch request. By dividing the

Batch request
of related
routers

(short lived)

Parse inputs and
merge with

supplementary data

Tabular
Supplementary

Data
(long lived)

Provisioning
Database

(short lived)

Template
Library

(long lived)

Provisioning
Generator
(per router)

Router
Configuration

Text Files

Application Specific
Data Model

Input

Output

Application Specific
Master Template

Parse inputs and
apply default rules

Application Specific
Default Rules

Step 1

Step 2

Application Specific
Data Model

User corrects
and adds
missing

information

Figure 3: 2-step PRESTO Data Flow

processing in these two steps, we isolate fallout due to
inadequate information to step 1, and provide the system
and its users opportunities to repair fallout and resume
automation before proceeding to step 2, which then pro-
duces the desired output.

PRESTO was designed to be input agnostic, and has
been adapted to be invoked in a number of different
modalities (via web services, via database invocations,
or via stand-alone interfaces), and to operate on inputs
of various forms and origins (database extracts, Excel
spreadsheets, XML forms). PRESTO is essentially state-
less. By design, the persistent data in PRESTO is limited
to a a repository of configuration policies; the persistent
database of associated router configurations is external to
PRESTO.

Accordingly, PRESTO applications are built on a pro-
visioning data model, describing short-lived data, and a
policy data model, describing long lived data (see Fig-
ure 3). We do not have space here to describe the details
or the precise representations of these data models, and
so shall describe salient features. Short lived inputs are
limited to those specific to a given batch request and con-
tain information used to populate the active templates.
Long lived inputs contain configuration policy. These in-
puts exist in a variety of forms, including the default rules
and data models used in both steps 1 and 2. The policy
data model captures rarely changing information, such
as the number of ports on an line access card, as well as
stable configuration parameters, e.g., domain wide net-
work access lists. The policy data model also encom-
passes the library of templates for configlets and whole
configurations. As noted above, the templates describe
the comprehensive configuration policy logic in the na-
tive device configuration language. Typically, new tem-
plates are released after significant scrutiny and test on a
release schedule (albeit at a rapid pace), accompanied in
parallel with customer or user notification – as template

change leads to change in network and service behavior.
All data models eventually require maintenance, in-

cluding the policy data model. PRESTO simplifies main-
taining tabular supplementary data on hardware configu-
ration rules, and PRESTO language templates by stor-
ing both in a database. We found that tabulating hard-
ware configuration data only allows for easy additions of
new hardware options, but it also allows non-technical
domain experts to update tables by maintaining and sub-
mitting corresponding spreadsheets. As noted in Sec-
tion 4, the active templates are also broken down into
configlets (sub-templates). The configlet concept allows
logical components to be easily updated without affect-
ing the entire library.

5.2 Validating Step-2 Inputs
Step 1 cleans up and normalizes short lived input data.
PRESTO provides an interface between steps 1 and 2
to allows users to update and validate values to ensure
all required data is available and correct. Users, how-
ever, can make mistakes. Therefore, step 2 must per-
form sanity checks; both syntactic and semantic checks
are required. Syntax checks occur in the parsing phase
and test for data formats, e.g., an IP addresses are valid
“dotted quads,” of the form x.x.x.x/y. Factoring parsing
checks to the parsing phase of step 2 simplifies the sys-
tem and improves template readability – as the templates
are written under the assumption that domain agnostic
inputs such as IP addresses are syntactically correct. Se-
mantic checks are more implemented naturally in the
configlets within the PRESTO language, as these checks
are domain or application specific, e.g., a check may as-
sure that an IP address is neither a network or broadcast
address. To support these various forms of checks, the
PRESTO language provides capabilities to emit errors
and warnings, via functions templateError() and
templateWarning(), each taking a string argument.

5.3 Handling Unknown Information
We found warning messages to be of remarkable utility,
as PRESTO users insisted that the process of generation
router configuration files proceed in spite of missing in-
formation. Users often preferred to obtain configurations
with warnings that some information might be missing or
inferred, rather than obtaining just an error message. As
this eventuality may appear surprising given PRESTO’s
two step architecture, some explanation may be in order.
Routers for a given project or customer are not always
ordered or provisioned at the same time. As routers are
related to one another through their configuration, situa-
tions sometimes arise where information needed to con-
figure one set of routers may depend on the ordering and

configuration of a second set of routers, and the infor-
mation flow for this second set may be missing at the
time that PRESTO is invoked to provision the first set.
In other scenarios, essential parameters such as IP ad-
dresses which must be written into the configuration may
be unknown at the time of initial configuration genera-
tion.

PRESTO accommodates these scenarios by allowing
the active templates to perform a sort of due diligence.
Active templates perform conditional checks to see if all
non-mandatory inputs are available. To allow data avail-
ability tests of values that drive iteration or looping con-
structs, the PRESTO template language was extended to
support query checking by allowing the standard SQL
syntax count(*) as COUNT. Using such a query, the
new context has access to a COUNT variable, on which
conditional logic is performed, allowing for the detection
of missing information. Where these non-mandatory in-
puts are missing, configuration lines are still generated
with dummy or inferred values, but language specific
comments ensure the produced code is still of some util-
ity (e.g., the router will boot and provide basic connec-
tivity), leaving to automation downstream of PRESTO to
complete the configuration task.

5.4 Implementation
The core PRESTO system was implemented in approxi-
mately 3,000 lines of Perl code. The code is divided into
two modules, PROVGEN.pm and PROVDB.pm, which
implement the language interpreter and database inter-
face, respectively. To accommodate a new application,
we found the application specific adapters to deal with
step 1 inputs can easily grow to thousands of lines. For-
tunately, however, many identical components or parsing
patterns can be easily ported from one application to an-
other.

6 Experience with Real Services

The development of the PRESTO system has benefited
from the insights of network designers and engineers
responsible for configuring network elements for large
commercial connectivity services. A key measure of the
value of such a tool ultimately is how useful and us-
able it is in practice for this target user community. The
PRESTO system is currently being used to automate con-
figuration generation for a number of different commer-
cial network services. In addition to the clear pressing
benefits of a successful configuration tool for network
management, such an exercise is important for the fol-
lowing reasons:

• It helps us understand the type and amount of effort

Figure 4: Provider VPN

needed in the process of taking the PRESTO tool
and customizing it for a new service.

• It allows us to evaluate and if required evolve the
design of the tool in the context of a real world ap-
plication and its particular requirements.

• It provides valuable feedback for improving the
tool.

In this section we present our experiences with,
and lessons learned from automating configuration for
provider-based VPNs via PRESTO. We first describe the
service, then outline our experiences with customizing
PRESTO for this service.

6.1 Customer edge router configuration
for provider VPNs

Enterprise networks are increasingly using provider-
based Virtual Private Networks (VPNs) to connect ge-
ographically disparate sites. In such a VPN, each cus-
tomer site has one or more customer edge (CE) router
connecting to a one or more provider edge (PE) routers
in the provider network (see Figure 4). Incoming cus-
tomer traffic from a CE is encapsulated at the PE and car-
ried across the provider network, decapsulated by a re-
mote provider edge router and handed off to the customer
CE router at a remote site of the same customer. Traf-
fic belonging to different customers is segregated in the
provider backbone, and the provider network is opaque
to the customer. The predominant method for supporting
provider-based VPNs uses MPLS as the encapsulating
technology across the provider backbone.

From a provider perspective, a critical part of sup-
porting the VPN service involves configuring the the CE
routers. The tasks include configuring ACLs, interfaces,
WAN (Wide Area Network) and LAN (Local Area Net-
work) links and routing (e.g., OSPF and BGP) . The key
challenges pertain to heterogeneity and scale. VPN ser-
vices enjoy a large and growing number of customers. A
single customer can have hundreds to thousands of dif-
ferent sites. There are a wide range of features and op-
tions a customer can select that impact the configuration.

There are different hardware elements (router models, in-
terface cards), different access type options for the CE-
PE connection (e.g., Frame Relay and ATM), different
interface speed options, and so on. Customers can opt for
a range of resiliency options for each of their sites, where
the resiliency option determines the number of routers at
the site, the number of distinct links from the site towards
the provider network, whether there is a last-resort dial
backup to be used if the data service fails, etc. An exam-
ple resiliency option is 2 CEs with 2 different links to the
provider network running in load sharing mode. In addi-
tion to being already large, the features and options also
change as the service offering improves and evolves. For
instance, newer router models and line cards are being
constantly added to the list of supported options.

The CE configuration task embodies many of the chal-
lenges outlined in Section 2. VPN services involve fast
growing demand, a large and increasing volume of router
orders to be configured, a huge space of feature combina-
tions, and the need to support a steadily increasing slew
of new features. All these factors make the overheads
with a manual-intensive configuration workflow unac-
ceptably high, and make these services prime candidates
for PRESTO automation.

6.2 A PRESTO tool for CE configuration
Developing a PRESTO-based CE configuration tool in-
volved knowledge engineering (codifying expert knowl-
edge, initially only partially documented) and data mod-
eling (identifying service-specific information and busi-
ness rules), as well as front end user interface and back
end PRESTO template development. The main tasks in-
volved were:

• identifying all the service-specific information re-
quired for building the CE configs, and develop-
ing the resulting VPN-specific configuration data
model.

• understanding the workflow surrounding the provi-
sioning process and available data sources and de-
termining how the information in the above data
model can be extracted.

• collating the service-specific provisioning rules and
building the service-specific templates based on en-
gineering guidelines from the service designers.

• defining the workflow of the PRESTO-based tool
and developing service-specific code around the
core service-agnostic PRESTO system.

Recall that PRESTO requires an application to define
two types of data models—a provisioning data model for

short lived data, and a policy data model for supplemen-
tal data and templates. The provisioning data model pro-
vides a normalized repository of data specific to the cur-
rent router request set. The VPN instantiation of the pro-
visioning data model placed as many fields as possible in
a central ROUTER table indexed by the router hostname.
This contained router specific information such as model
number, software version, and available customer infor-
mation. Whenever multiple instances of any type of data
was required to build template iterations, a new table was
created – that is the data model was highly normalized,
as replication has risk in provisioning tasks. For VPN,
this led to the creation of tables for WAN interfaces, dial
backup information, and the logical interfaces that de-
fine VPN connections. In total, the resulting provision-
ing data model consisted of one main ROUTER table and
nine secondary tables, each containing foreign keys to
reference the ROUTER table.

The longer lived policy data model was split into sup-
plemental data and template data sub-models. Supple-
mental data consisted mainly of data already naturally
expressed in tabular form, e.g., mappings from card
names to interface type and number of ports, and map-
pings from strings describing interface speeds to the ac-
tual value to code in the configuration. The template
data model proved much more interesting, as it contained
the configlets used to create the actual router configura-
tion. Configlets were grouped by logical features, specif-
ically BASE, LAN, WAN, RESILIENCY, DAC, and B2B.
as follows. The BASE table consisted of the configlet
required for all routers, e.g., hostname, password, loop-
back, and motd commands. The LAN and WAN tables
contained configlets for types of interfaces, e.g., frame
relay and ATM interfaces. The RESILIENCY table con-
tained configlets defining the different resiliency options
required by the VPN service. The DAC table contained
configlets specific to various parts of the dial backup con-
figuration. The B2B table defined special interface def-
initions used where CE routers are organized in back to
back configurations. Defining these new feature tables
as primitives or building blocks allowed specialized con-
figlets to be easily composed and promoted knowledge
and code reuse. A total of 44 configlets containing 5414
lines of statements were created.

6.3 Benefits and Experiences

Various existing processes such as accounting, customer
service, provisioning, and network management interact
with configuration management. For the PRESTO tool
to be practically usable, it was critical for it to operate
within the confines of the surrounding existing config-
uration management processes and systems. This re-
quirement to operate in pre-existing existing system and

tool environments significantly impacted the PRESTO
design, and the extent to which the configuration genera-
tion could be automated. Indeed, the 2-step PRESTO ar-
chitecture and the accommodations for potential human
intervention/oversight between the two Steps were key
design elements that resulted from this requirement.

We next revisit the requirements criteria introduced in
Section 2.2 and discuss to what extent the PRESTO real-
ization achieves those.
• Support existing configuration languages: The

PRESTO template language achieved this goal com-
pletely. A PRESTO template consists of active template
code and configuration statements in an existing config-
uration language. The template language was used to ex-
tract the particular configuration context, determine the
control of flow in a configlet, specify rules for combining
configlets, and achieve variable substitution and func-
tional substitution. However, the actual configlet was
specified in the configuration language that network en-
gineers are familiar with, e.g., Cicso CLI (Figure 2).
• Scale with options, combinations, and infrastruc-

ture: Several aspects of the PRESTO design made it pos-
sible to write a configlet once and reuse it for many dif-
ferent configuration scenarios. These included the capa-
bility to dynamically extract data as needed, the approach
of writing small configlets for specific features of a con-
figuration, and the support provided for combining con-
figlets together deterministically or conditionally. Reuse
of configlets was critical in ensuring that the authoring
of templates for the VPN service was tractable, despite
the large number of feature combinations in this service.
Our experience demonstrated that the effort required to
author templates the first time was acceptable – any sig-
nificant lags were attributable to legitimate debate on the
nuances of the precise design intent and associated router
capabilities. The incremental effort in updating the sys-
tem to handle new features was also low. Any updates
to the supplementary data such as a new interface card
were realized by simply updating the relevant table in
the database, without any additional coding effort. For
supporting a new router model, we were able to reuse
all the existing templates for common features, and only
needed to write templates for features that were not yet
covered (e.g., a new interface type) or that were router
model specific (e.g., rules for numbering interfaces). In
fact, the ability to reuse existing templates has proven to
be a key strength of the PRESTO approach.
• Support heterogeneous and diverse data sources: A

key task involved modeling the information needed for
service configuration and determining how that informa-
tion could be obtained from existing data sources. For
the VPN service, there were multiple sources of input in-
formation: (i) a customer order document that contained
details about a customers request for the service, such

as a list of sites, and the selection of choices for that
site (as listed above, the choices included the number of
routers, router models, number of access links, access
types, and resiliency option); (ii) other documents that
listed required auxiliary information, e.g., a list of the
supported router models and cards and the type and num-
ber of interfaces on them, (iii) engineering policy docu-
ments that specified the configuration rules for all com-
binations of customer order options. While a large sub-
set of the required information could be directly gleaned
from the various data sources described before, there
were other important information pieces that for differ-
ent reasons could not be pulled automatically from an
external source. Some of this information required ap-
plication of service-specific business rules and compu-
tations to available input data, while other information
needed to be manually assigned. We found that the 2-
step PRESTO architecture (see Section 5.1) was well
suited to handle this data-heterogeneous environment. In
addition to getting available information from a variety
of input sources, Step 1 marshalled additional required
values and choices in the data model by applying service-
specific rules to the available input information. The re-
sulting partially populated provisioning data model was
exposed to the user at the end of Step 1 for validation
and for filling in missing values. Step 2 of the system
then successfully drove the task of actually creating the
CE configurations.

One measure of the benefit an automation tool is the
reduction in the amount of human mediated effort. While
an exact apple to apple comparison is not easy, we com-
pared the traditional VPN CE configuration workflow to
the PRESTO workflow. In the traditional manual config-
uration workflow, engineers proceeded through a man-
ual time consuming process where they collated the dif-
ferent data sources, ran complex computations to de-
rive additional necessary information, and then navigated
the complex options in the customer order to create the
router configuration. In a customer order with many
sites and routers, the process had to be repeated many
times, once for each router. If dependencies existed be-
tween multiple routers, engineers had also to be careful
to reflect the dependencies and build consistent configu-
rations. For instance, if 2 routers had a connection be-
tween them, the configuration of the interfaces on both
sides should be consistent. In contrast, the PRESTO tool
for CE configuration has a significantly more automated
workflow, where:

1. The configuration engineer uploaded the customer
order, and begins executing the first step of
PRESTO.

2. PRESTO created a document at the end of the first
step that contained for each router in the customer

order a list of all the information fields needed for
configuring the router. Of the total of 64 rele-
vant fields, about 42 were auto-populated with val-
ues parsed directly from the various input sources,
and another 14 were auto-populated by applying
default engineering rules coded into PRESTO. A
small number of fields (around eight), had to be
manually filled in.

3. The engineer reviewed this document, filled in the
missing field values, overrode auto-populated val-
ues if required, and initiated the execution of the
second step of PRESTO.

4. The tool then created and returned the configura-
tions for all the routers in the customer order.

The manual effort with PRESTO was reduced to filling
in a small number of values per router, reviewing auto-
populated fields, and sometimes overriding them. Feed-
back from user trials indicated that engineers found the
approach of auto-computing, and auto-populating field
values based on default rules to be very useful, even
though manual intervention was sometimes needed to
override the values.

The PRESTO CE configuration tool was put through
user trials involving engineers from across the world.
This helped uncover and normalize certain configuration
rules that showed regional variations under the manual
process, reinforcing the need for the PRESTO tool. One
lesson from the user trials was that the system must not
only create correct configurations, but also must support
a streamlined and sparse user interface. Though we do
not describe the details here, designing a suitable user in-
terface proved non-trivial, and required several iterations
before it passed the acceptance threshold of users.

7 Related Work
Several industrial products (for example, [6, 16, 20,
21, 7]) have emerged that offer support for configu-
ration management. Many of these efforts have fo-
cused on developing abstract languages to specify con-
figurations in a vendor neutral fashion, e.g., IETF stan-
dard SNMP5D MIBs [5], and the Common Informa-
tion Model (CIM) [9]. These information models de-
fine and organize configuration semantics for network-
ing/computing equipment and services in a manner not
bound to a particular manufacturer or implementation.
An example of the success of such an approach is the
DSL Forum’s TR-069 effort for DSL router configura-
tion [10]. Yet, general router configuration via this ap-
proach is challenging given rapid technology evolution,
forces driving network operators and vendors towards

competitive and differentiated advantage, feature prolif-
eration, and the need to continuously expand networks
and features while maintaining backwards compatibility.

Boehm et. al. [3] present a system that raises the
abstraction level at which routing policies are specified
from individual BGP statements to a network-wide rout-
ing policy. The system includes support to generate the
appropriate pieces of router configuration for all routers
in the network. An approach to automated provision-
ing of BGP-speaking customers is discussed in [15].
These efforts focus on BGP, just one component of router
configuration. Narain [18] seeks to bridge the gap be-
tween end-to-end network service requirements, and de-
tailed component configurations, by formal specifica-
tion of network service requirements. Such specification
could aid synthesis of router configurations. In contrast
to these efforts, our focus in PRESTO is on the synthesis
of complete, precise, and diverse network configurations
that are readily deployable.

Several initiatives have explored configuration man-
agement systems for desktop, and server environ-
ments [1, 4, 2, 12]. Networked and router environ-
ments often involve more complex options and inter-
dependencies than desktop environments, and these so-
lutions do not directly apply. That said, there is much
potential benefit from cross-fertilization between these
domains. Further, many of these works have emphasized
deployment of configurations, and have placed relatively
little effort on deciding what the configuration of a node
should be [2].

While the focus of PRESTO is the synthesis of config-
uration files, others have looked at important orthogonal
issues related to configuration management. The Net-
work Configuration Protocol (NETCONF) [19, 11] effort
provides mechanisms to install, manipulate, and delete
the configuration of network devices. The NESTOR
project [22] seeks to simplify configuration management
tasks which requires changes in multiple interdependent
elements at different network layers by avoiding incon-
sistent configuration states among elements, and facili-
tating undo of configuration changes to recover an op-
erational state. Others [13, 14] have looked at detailed
modeling and detection of errors in deployed configura-
tions.

8 Conclusions
The PRESTO system presented throughout represents a
step toward realistic automation of massive scale config-
uration management. While its genesis was mandated by
the specific needs of a single provider, the approach and
insights are universal. Central to the success of PRESTO
are the satisfied mandates for the treatment of complex
and evolving service definitions and customer require-
ments, dealing with the hugely diverse and sometimes

unreliable data sources, and communication within the
lingua franca of its user community.

PRESTO attempts to balance these requirements by
providing malleable and composable configlets that en-
code configuration business logic directly in the target
language. Integration of external data sources is per-
formed by simple code embedded in templates and spe-
cialized database query interfaces. This approach pro-
vides network engineers with rigorous tools to clearly
define the workflow and content of service configuration
while maintaining the flexibility of enablers to manipu-
late the resulting configurations to suit the customer or
environment in which they will be used. Additionally,
configlets are not just applicable for routers; other de-
vices with text-based configuration can also benefit.

Our experiences with PRESTO in the VPN and other
services are promising. We learned much that led us to
adjust the language and the way it is used in practice, but
also confirmed that PRESTO approach is viable. How-
ever, we found one of the greatest challenges of automat-
ing router configuration at a massive scale is the ability
to gather and reconcile necessary input data.

Our future work extends PRESTO in two key direc-
tions. First, we are deploying the tool in a wider range of
services. Our goal here is to demonstrate that much of the
PRESTO design is general, and new services supported
with relatively little effort. The second major initiative
is to evaluate PRESTO as a platform for “brownfield”
configuration in full generality, where updates may be
made by a set of systems and tools, with PRESTO among
this set. Such tools tackle the more complex problem
of projecting a configuration into a live system without
negative consequences, e.g., causing performance, secu-
rity, or connectivity problems. These efforts may require
significantly more intelligence than the smart templates
currently supported, and may require the introduction of
techniques that reason about the consequences of con-
figuration with respect to the services that are already
present. It is through these efforts that providers will be-
gin to ease the burden of costly and error-prone configu-
ration management.

Notes
1The specification may in fact be split across more than one file, or

modality of description of the command set
2Enablers are the personnel who implement a given service, either

staff on-site or within a provider’s Network Operations Center.
3Note, this use of context is different than in context-based evalua-

tion of programming language literature.

References
[1] P. Anderson. Towards a high-level machine configuration

system. In Proc. of the 8th Large Installations Systems
Administration (LISA) Conference, 1994.

[2] P. Anderson and E. Smith. Configuration tools: Work-
ing together. In Proc. of the Large Installations Systems
Administration (LISA) Conference, December 2005.

[3] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and
R. Volk. Network-wide inter-domain routing policies:
Design and realization. April 2005.

[4] M. Burgess. Cfengine: a site configuration engine. In
USENIX Computing systems, Vol 8, No. 3, 1995.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple
network management protocol (snmp). http://www.
ietf.org/rfc/rfc1157.txt, May 1990.

[6] Cisco IP solution center. http://www.cisco.
com/en/US/products/sw/netmgtsw/ps4748/
index.html.

[7] Cisco Systems Inc. Cisco works small net-
work management solution version 1.5. http:
//www.cisco.com/warp/public/cc/pd/
wr2k/prodlit/snms_ov.pdf, 2003.

[8] Cisco Systems, Inc. Cisco IOS Configuration Fundamen-
tals Command Reference, 2006. Release 12.4.

[9] Distributed Management Task Force, Inc. http://
www.dmtf.org.

[10] DSL forum TR-069. http://www.dslforum.org/
aboutdsl/tr_table.html.

[11] R. Enns. NETCONF configuration protocol.
http://www.ietf.org/internet-drafts/
draft-ietf-netconf-prot-12.txt, February
2006.

[12] N. Desai et al. A case study in configuration management
tool deployment. In Proc. of the Large Installations Sys-
tems Administration (LISA) Conference, December 2005.

[13] N. Feamster and H. Balakrishnan. Detecting BGP con-
figuration faults with static analysis. In Proc. of the 2nd
Symposium on Networked Systems Design and Implemen-
tation (NSDI), May 2005.

[14] A. Feldmann and J. Rexford. IP network configuration for
intradomain traffic engineering. In IEEE Network Maga-
zine, September 2001.

[15] J. Gottlieb, A. Greenberg, J. Rexford, and Jia Wang. Au-
tomated provisioning of BGP customers. In IEEE Net-
work Magazine, December 2003.

[16] Intelliden. http://www.intelliden.com/.
[17] T. Li, B. Cole, P. Morton, and D. Li. RFC 2281, Cisco

hot standby router protocol (HSRP). Internet Engineering
Task Force, March 1998. http://www.ietf.org/
rfc/rfc2281.txt.

[18] S. Narain. Network configuration management via model
finding. In Proc. of the Large Installations Systems Ad-
ministration (LISA) Conference, December 2005.

[19] Network configuration (netconf). http:
//www.ietf.org/html.charters/
netconf-charter.html.

[20] Opsware. http://www.opsware.com/.
[21] Voyence. http://www.voyence.com/.
[22] Yechiam Yemini, Alexander Konstantinou, and Danilo

Florissi. NESTOR: An architecture for network self-
management and organization. IEEE Journal on Selected
Areas in Communications, 18(5):758–766, May 2000.

