
SandScout: Automatic Detection of
Flaws in iOS Sandbox Profiles

Luke Deshotels
North Carolina State

University
ladeshot@ncsu.edu

Răzvan Deaconescu
University POLITEHNICA of

Bucharest
razvan.deaconescu@

cs.pub.ro

Mihai Chiroiu
University POLITEHNICA of

Bucharest
mihai.chiroiu@

cs.pub.ro
Lucas Davi

Technische Universität
Darmstadt, Germany

lucas.davi@trust.cased.de

William Enck
North Carolina State

University
whenck@ncsu.edu

Ahmad-Reza Sadeghi
Technische Universität
Darmstadt, Germany

ahmad.sadeghi@trust.cased.de

ABSTRACT
Recent literature on iOS security has focused on the ma-
licious potential of third-party applications, demonstrating
how developers can bypass application vetting and code-
level protections. In addition to these protections, iOS uses
a generic sandbox profile called “container” to confine ma-
licious or exploited third-party applications. In this paper,
we present the first systematic analysis of the iOS container
sandbox profile. We propose the SandScout framework to
extract, decompile, formally model, and analyze iOS sand-
box profiles as logic-based programs. We use our Prolog-
based queries to evaluate file-based security properties of the
container sandbox profile for iOS 9.0.2 and discover seven
classes of exploitable vulnerabilities. These attacks affect
non-jailbroken devices running later versions of iOS. We are
working with Apple to resolve these attacks, and we expect
that SandScout will play a significant role in the develop-
ment of sandbox profiles for future versions of iOS.

1. INTRODUCTION
The sale of smartphones has out-paced the sale of

PCs [15]. The two dominant platforms for these smart
phones are Android and iOS [16]. There has been a sig-
nificant amount of academic research on Android, in part,
because of its open-source nature. In contrast, iOS is not
open-source, and studies of iOS may require significant re-
verse engineering effort.

Prior research on iOS security has focused on the follow-
ing three areas. First, works have demonstrated methods
for creating iOS malware [48, 22, 33, 52, 40, 47]. Second,
others emphasize methods to detect malicious behavior ei-
ther statically [29] or dynamically [28]. Third, new security
mechanisms [22, 26, 50] have been proposed that hook into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978336

application code to provide additional security. All of these
works rely on interacting with the code of third-party iOS
applications.

We investigate something different: iOS sandbox profiles.
These sandbox profiles define access control policies for sys-
tem calls made by processes. There are 117 sandbox profiles
in the iOS 9.0.2 kernel, and many system daemons and ap-
plications have dedicated profiles. However, all third-party
applications, and some system applications, are confined us-
ing the shared “container” sandbox profile. The container
sandbox profile is large and complex, leading to the research
question: what flaws in the container sandbox profile can
third-party iOS applications exploit?

Goals and Contributions: In this paper, we present
the SandScout framework to answer this research question.
First, we create a tool, SandBlaster, which automatically
extracts compiled profiles from a firmware image and de-
compiles them into their original SandBox Profile Language
(SBPL). Second, we formally model sandbox profiles using
Prolog by creating a compiler that automatically translates
SBPL policies into Prolog facts. Third, we develop Prolog
queries that test critical security properties of the container
sandbox policy. The queries identify potential security vul-
nerabilities in the policy. Finally, we create an iOS applica-
tion that provides assisted verification of potential vulnera-
bilities on iOS devices.

We use SandScout to evaluate the container sandbox pro-
file for iOS 9.0.2. Sandbox profiles mediate all system calls
including file access and inter-process communication (IPC).
For this evaluation, we limit our security queries to file-based
sandbox policy rules for two reasons. First, non-file-based
sandbox policy rules require additional semantics that are
not available in the policy. Second, we find significant se-
curity vulnerabilities within the file-based sandbox policy
rules. We plan to expand our analysis to non-file-based pol-
icy rules in future work.

Our analysis of the file-based policy rules in the iOS
9.0.2 container sandbox profile identified seven broad vul-
nerabilities that are exploitable by third-party applications:
(1) methods of bypassing iOS’s privacy settings for Con-
tacts; (2) methods of learning a user’s location search his-
tory; (3) methods of inferring sensitive information by ac-
cessing metadata of system files; (4) methods of obtaining

http://dx.doi.org/10.1145/2976749.2978336

the user’s name and media library; (5) methods of consum-
ing disk storage space that cannot be recovered by unin-
stalling the malicious app; (6) methods of preventing access
to system resources such as the AddressBook; (7) methods
for colluding applications to communicate without using iOS
sanctioned IPC. We have reported all of these vulnerabili-
ties to Apple and are working with them to ensure they are
fixed in future versions of iOS.

This paper makes the following contributions:

• We develop the first methods to automatically produce
human readable SBPL policies. Prior work was unable
to produce SBPL policies for human review or auto-
mated analysis. Our tool extracts and decompiles all
sandbox profiles in firmwares for iOS 7, 8, and 9.

• We formally model SBPL policies using Prolog. We
create an SBPL to Prolog compiler based on a context
free grammar we have defined for SBPL.

• We perform the first systematic evaluation of the con-
tainer sandbox profile for recent versions of iOS and
discover vulnerabilities. We develop Prolog queries
representing security requirements. When applied to
the iOS 9.0.2 container sandbox profile, we discover
seven classes of security vulnerabilities.

The remainder of the paper proceeds as follows. Section 2
provides background information. Section 3 provides an
overview of SandScout. Section 4 discusses our design. Sec-
tion 5 presents our results. Section 6 provides discussion of
our limitations. Section 7 presents related work. Section 8
concludes.

2. BACKGROUND
iOS is the operating system of the iPhone, iPod, iPad,

and older versions of AppleTV (newer AppleTV devices run
TVOS). iOS is based largely on Apple’s desktop operating
system, OS X, and the two share many internal similarities.

2.1 iOS Security Mechanisms
iOS relies on four broad types of security mechanisms: ap-

plication vetting, code signing, memory protection, and sand-
boxing. When developers submit an application to the App
Store [7] for vetting, they sign the application using their de-
veloper key. While the specific details of the vetting process
are only known to Apple, it is assumed that they use a com-
bination of static and dynamic analysis to detect malicious
behavior. If Apple approves of the application, it adds its
own signature to the application and makes the application
available on the App Store.

An iOS device will only execute code pages coming from
binaries with valid signatures. Generally, having a valid sig-
nature means the application is signed by Apple. However,
devices provisioned for developers or enterprises may also
run applications signed by specific developer and enterprise
keys. Finally, immutable capabilities called entitlements are
stored inside an application’s signature. Apple grants devel-
opers a certificate that determines which entitlements they
may apply to their applications.

In addition to code signing, iOS uses data execution
prevention (DEP) and address space layout randomization
(ASLR) to mitigate memory attacks. DEP prevents code
injection attacks by ensuring that no code page is writable

and executable at the same time. ASLR mitigates code-
reuse attacks by randomizing code and data segments in
memory. Interestingly, code signing complicates the ASLR
design and limits its protection, because shuffling code re-
gions may invalidate signatures [2]. Prior work [48, 22, 42,
34] has demonstrated several techniques for bypassing ap-
plication vetting and memory protections.

iOS sandboxes all applications using a mandatory access
control policy to limit the abilities of exploited or malicious
code. Sandbox policies are enforced by the Trusted BSD
mandatory access control framework [18] using a kernel ex-
tension called Sandbox.kext. iOS uses different sandbox poli-
cies (called profiles) for different applications. Many system
applications and daemons have their own profile. However,
all third-party applications are controlled by a generic sand-
box profile called container. The container sandbox profile
is also used by several system applications. In order to sup-
port the functionality of many different applications, it is
the largest and most complex sandbox profile.

Sandbox profile rules define access to system calls (e.g.,
file read and write). To be generic, the container sandbox
profile uses conditional rules that may require capabilities.
There are two primary types of capability considered by the
sandbox: entitlements and sandbox extensions. Mentioned
above, entitlements are static capabilities assigned by ap-
plication’s developer during development. Entitlements are
key-value pairs, which are stored in a dictionary structure
embedded in an application’s code signature. Note that en-
titlement keys are not cryptographic keys, and they simply
map to values in the entitlement dictionary. Once the ap-
plication has been signed, its entitlements cannot be mod-
ified without invalidating the signature. In contrast, sand-
box extensions are dynamic capabilities that can be granted
or revoked at run time. System daemons such as the tccd

daemon, which helps enforce iOS’s user specified Privacy
Settings, can grant sandbox extensions.

Finally, while the vast majority of iOS’s access control
policy is enforced in Sandbox.kext using sandbox profiles,
there are various access control checks within system dae-
mons. These system daemons maintain their own policies
based on user preferences (e.g., for Privacy Settings) and
entitlements. In this paper, we limit our investigation to
the sandbox profiles and leave these other daemon specific
access control policies to future work.

2.2 Sandbox Profile Language (SBPL)
Sandbox profiles are written in the SandBox Profile Lan-

guage (SBPL), which is derived from Scheme. Sandbox pro-
files are compiled from SBPL into binary blobs that are
structured as graphs for efficient queries.

An SBPL sandbox profile consists of a version indicator,
a default decision, and 0 or more rules. Sandbox rules can
allow or deny access to system calls based on capabilities
held by the sandboxed process. A default decision (i.e., deny
or allow) defines the decision to make if no sandbox rule
matches the evaluated system call. The container profile
and the majority of sandbox profiles we have encountered are
whitelists that deny by default. Therefore, SBPL examples
provided in this paper assume a default deny policy.

Each sandbox rule consists of a decision (i.e., allow or
deny), an operation (e.g., file-read-data or file-write-

create), and 0 or more filters and metafilters.

Filters: A filter considers the context of the system call

2) Policy Modeling1) Sandbox Decompilation 3) Policy Analysis

iOS Firmware

Compiled
Sandbox
Profiles

SBPL to
Prolog

Compiler

4) Attack Verification

 File Paths
To Attack

Prolog
Engine

(Unification)

Prolog
Queries

Prolog Facts Verified Attacks

Prolog Rules

SBPL
Semantics

Security
Requirements

SBPL Profiles

Profile 1

Profile n
Attack
Tester

Sandbox
Decompiler

(SandBlaster)

...

Figure 1: Overview of SandScout.

and consists of a filter-type and 0 or more filter-values. A
filter-type indicates the filter’s type (e.g., subpath, literal,
or regex). Filter-values represent parameters for the filter-
type (e.g., a string indicating a file path).

Metafilters: Metafilters act as logical operations on filters.
There are three types of explicit metafilters: require-all

requires all of its filters to be satisfied (i.e., logical AND);
require-any requires any of its filters to be satisfied (i.e.,
logical OR); and require-not requires that the filters not
be satisfied (i.e., logical NOT). Metafilters can be, and fre-
quently are, nested.

Some filters imply the use of metafilters. The regex filter
implies a require-any metafilter applied to a list of one or
more reqular expressions that act as its filter values. The
require-entitlement filter implies a require-all metafilter
applied to an entitlement key and the entitlement-value fil-
ter. The entitlement-value filter may also have metafilters
applied to it, but these are explicitly stated. Note that the
entitlements of a process are stored as key-value pairs in a
dictionary structure, so all entitlements have both keys and
values. Section 4.2 discusses our context free grammar for
parsing the SBPL language.

Ideally, a sandbox profile should allow only those privi-
leges a process requires. The container sandbox profile pro-
vides flexibility by using metafilters that only provide priv-
ileges if a process has required capabilities. Consider the
following example SBPL rule

(allow file-read*
(require-all

(subpath "/Media/Safari")
(require-not

(literal "/Media/Safari/secret.txt")
)
(require-entitlement

"private.signing-identifier"
(require-any

(entitlement-value "mobilesafari")
(entitlement-value "safarifetcherd")

))))

This rule allows the sandboxed process to read any file other
than secret.txt in the /Media/Safari/ subpath, if that pro-
cess has the required capabilities. In this case, the required
entitlement key is "private.signing-identifier", and the en-
titlement value must be either "mobilesafari" or "safar-

ifetcherd". In other words, this rule states that the Mobile
Safari app or the safarifetcherd daemon can read files other
than secret.txt in the /Media/Safari/ directory.

In addition to immutable entitlements, iOS uses dynamic

capabilities called sandbox extensions, which can be granted
and revoked at runtime. The sandbox profile can include
conditional rules that require sandbox extensions with syn-
tax similar to the example for shown for entitlements.

3. OVERVIEW
Apple’s application review process is not infallible [48, 22,

42, 34, 23, 51, 13, 1, 11]. The iOS container profile is de-
signed to protect against abuse by third-party applications.
However, little is known about the actual policy it enforces.
Least privilege sandbox policies are difficult to define cor-
rectly [20, 53, 44, 46, 39, 37]. Therefore, in this paper,
we ask the overarching research question, what flaws in the
container sandbox profile can third-party iOS applications
exploit? That is, we seek to systematically identify vulner-
abilities in the container profile. Answering this question
requires addressing the following challenges:

• Sandbox policy extraction. Built-in sandbox policies
are stored in binary form as precompiled graphs. Ap-
ple sometimes changes the location and structure of
these built-in profiles in updates to iOS. We were un-
able to find any sandbox decompilation tools that de-
compiled sandbox profiles into SBPL.

• Modeling sandbox policy semantics. The SandBox Pol-
icy Language is not officially documented and must
be reverse engineered. Unofficial documentation of
SBPL [32, 42], is outdated and only documents a mi-
nority of the sandbox operations available for iOS.

• Automated discovery and verification of potential vul-
nerabilities. We first need to understand the mistakes
and misconfigurations made by developers working on
the Apple sandbox. Then we must define heuristics to
detect these misconfigurations. Finally, we must eval-
uate the consequences of abusing potential misconfig-
urations detected by these heuristics.

SandScout addresses these challenges in four parts as
shown in Figure 1. First, we created SandBlaster to auto-
matically extract sandbox profiles from iOS firmware images
and decompile them. Second, we created an SBPL to Pro-
log compiler to automatically convert sandbox profiles into
collections of Prolog facts. Third, we model security require-
ments as Prolog queries to systematically discover facts that
violate those requirements. Fourth, we have semi-automated
the attack verification process.

We chose to use Prolog for three reasons. First, Prolog
was used for evaluation of security policies in prior work [30,
24]. Second, Prolog is capable of handling the regular ex-
pressions that can appear in Apple sandbox profiles. Third,
Prolog is sufficiently extensible for incorporating additional
iOS security mechanisms in future work.

Our analysis focuses on the container profile because it
sandboxes third party applications, for which we can con-
struct a common set of security requirements. SandScout
can also analyze the other sandbox profiles extracted from
iOS; however since they are primarily used for trusted sys-
tem apps, the threat model is different.

(1) Sandbox Decompilation: To extract and decompile
sandbox profiles, we created SandBlaster. SandBlaster de-
compiles sandbox profiles directly from iOS firmware images,
which can be downloaded directly from Apple [4]. Sand-
Blaster is the first tool to fully decompile sandbox profiles
for iOS 7, 8, and 9 into human readable and compilable
SandBox Profile Language (SBPL). While Blazakis [3] pre-
viously created a sandbox profile decompiler, his tool cannot
decompile modern iOS sandbox profiles (i.e., iOS 7, 8, and
9). Esser [31] also created a sandbox analysis tool, but it
only produces intermediate information (i.e., graphs), which
are insufficient for our analysis.

We chose to work with decompiled SBPL profiles for three
reasons. First, we want Apple to be able to use the origi-
nal SBPL profiles as input to our system. Second, under-
standing SBPL profiles provides insight into how developers
might make mistakes. Third, the ability to modify and run
our decompiled SBPL profiles helped us test our results and
reverse engineer SBPL semantics.

(2) Policy Modeling: We model iOS sandbox profiles as
collections of Prolog facts. We created a compiler, which
uses a context free grammar to automatically parse and
recursively translate SBPL into Prolog facts. Nesting of
metafilters as shown in Section 2 makes converting from
SBPL to Prolog nontrivial. We handle combinations of log-
ical ANDs and logical ORs by formatting the Prolog facts
in disjunctive normal form.

(3) Policy Analysis: We model the security requirements
of stakeholders as Prolog queries. The queries discussed in
this paper are not intended to be comprehensive, but they
provide practical demonstrations of the flaws SandScout can
detect. The following is an example of a security require-
ment: No third-party application should have direct write
access to system files. A query representing this require-
ment may match harmless sandbox rules (e.g., write access
to /dev/null), but we demonstrate that it can also detect
significant vulnerabilities. SandScout is extensible and can
process more queries than those demonstrated in this paper.

We model profile-independent semantics of SBPL as Pro-
log rules. For example, the knowledge that file-read* access
implies file-read-data and file-read-metadata can be rep-
resented as a Prolog rule. Since these Prolog rules are true
for every SBPL profile, they only need to be defined once.
Note that sandbox rules and Prolog rules are not the same
thing. A sandbox rule allows or denies an operation for a
given set of filters. A Prolog rule is a clause that represents
a logical relationship between Prolog facts.

(4) Attack Verification: To remove any false positives
produced by our queries, we have created an iOS appli-
cation for testing attacks that abuse sandbox misconfigu-

rations. This app implements a collection of Objective-C
functions for testing operations on file paths (e.g., moving
files, querying databases, creating hard links, etc.). The ap-
plication also includes functions that perform more complex
attacks such as copying a given number of 10 MB files to a
given directory in order to consume storage space. The app
reports on which attacks are successful and outputs error
messages for those attacks that fail.

Summary of Findings: We have used SandScout to eval-
uate the container sandbox profile from iOS 9.0.2. Sand-
Scout detected sandbox rules vulnerable to seven attacks.
Each of these attacks has been disclosed to Apple, and has
been successfully tested on iOS 9.3.1 (Latest version at the
time of experiments). These attacks can be more broadly
categorized as follows.

• Bypassing Privacy Settings: By creating a hard link to
the AddressBook database while an app has access to
it, that app can keep access even after the user revokes
access through Privacy Settings. The app can place
the hard link into a directory accessible to other apps
that have never been granted access to the AddressBook

through Privacy Settings.

• Privacy Leaks: We have identified several system files
containing sensitive user data that the container profile
allows third-party applications to read. These unpro-
tected files contain information on the user’s location
search history, media contents, the user’s name, and
the names of computers that have synced to the de-
vice. Third-party apps can also read the metadata of
all directory files and learn potentially sensitive infor-
mation about the user and the device. We also iden-
tify 4 file paths that are both readable and writable to
third-party apps, which allows applications to easily
leak information to other apps.

• System Damage: Third-party apps can abuse write
access to system files by deleting, moving, or changing
permissions to prevent legitimate access to these files.
These apps can also consume all storage space on the
hard drive by creating new system files or appending
data to existing ones. This storage space is not released
by uninstalling the third-party app nor does it appear
in the Storage Manager as being used by the app.

4. DESIGN
SandScout detects attacks against iOS sandbox profile

vulnerabilities in four steps. First, we automatically de-
compile the sandbox profiles with our tool, SandBlaster.
Second, we use our SBPL to Prolog compiler to automati-
cally model the decompiled sandbox profiles as Prolog facts.
Third, we use Prolog rules and queries to automatically de-
tect sandbox misconfigurations that violate security require-
ments. Fourth, we use our attack testing application to eval-
uate the consequences of abusing these misconfigurations.

4.1 Decompiling Sandbox Profiles
As discussed in Section 2, sandbox profiles are written in

the SandBox Profile Language (SBPL) and compiled into
binary blobs representing graphs used to rapidly query the
policies they define. Our tool, SandBlaster, extracts and
decompiles sandbox profiles from this compiled format back
into their original language.

Note that SandBlaster expands upon the work of Blaza-
kis [21] and Esser [31]. Distinctions between SandBlaster
and prior work are discussed in Section 7. A full, techni-
cal description of SandBlaster is available in our technical
report [27]. Here, we limit our description to the key novel
contributions of the tool.

We use a combination of our own scripts, existing tools [9,
5, 10, 8, 19], and information shared by reverse engineers [21,
31] to perform the initial steps of sandbox profile extraction.
This process consists of decrypting iOS firmware, extracting
binary profiles, and processing filter types and filter values.

The novelty of SandBlaster is the conversion of the graph
structure of a compiled sandbox profile into valid, hu-
man readable SBPL. This conversion requires reconstructing
graph connections into their respective metafilter compo-
nents. Within the compiled sandbox profile, each sandbox
operation (e.g., file-read-data) is represented by a directed
acyclic graph. This graph contains two terminal nodes for
the allow and deny decisions. Nonterminal nodes represent
filters (e.g., literal "/var/myFile"). Edges represent the
presence or absence of metafilters (e.g., require-all). An
example graph is shown in step 1 of Figure 2.

Each nonterminal node has two edges: match and unmatch.
The match edge is followed when the filter is matched, and
the unmatch edge is followed if the filter is not matched. The
decision to allow or deny a system call is made based on
the terminal node reached after traversing the graph. In a
default deny profile, a match edge connecting to allow and
an unmatch edge connecting to deny means the node has no
metafilters. In this case, if the filter the node represents
is matched, the operation is allowed. However, other con-
nections for the match and unmatch edges can represent var-
ious metafilters. Table 1 shows all possible match and un-

match combinations and the logical equivalent of the relevant
metafilters. Note that metafilters can be nested, so the value
of other is evaluated recursively when it appears.

Graph to SBPL Demonstration: We use Table 1 to
explain each of the four steps in converting the graph in
Figure 2 into SBPL. Note that in these graphs, a solid line
represents a match edge, and a dotted line represents an un-

match edge. 1) Node B moves to deny on a match and allow
on an unmatch, so we can apply the require-not metafilter
to B. Negation has the effect of swapping a node’s match and
unmatch edges. 2) Node C moves to allow on a match and
a nonterminal on an unmatch, so we can apply require-any

to C and the nonterminal. In other words, if C’s filter does
not match, then we should attempt to match the other non-
terminal’s filter before denying the system call. 3) Node A

moves to a nonterminal on a match and deny on an unmatch, so
we can apply require-all to A and the nonterminal. In other
words, if A’s filter does not match, then we should deny the
system call and not attempt to match the other nontermi-
nal’s filter. 4) Finally the result of processing and merging
all nonterminal nodes is a collection of SBPL metafilters ap-
plied to filters.

4.2 Modeling Sandbox Profiles in Prolog
SandScout uses Prolog to analyze iOS sandbox profiles.

Each sandbox profile rule is converted into a collection of
Prolog facts defined as follows:

decision(operation ,[listOfFilters]).

Recall that each sandbox profile rule may contain many lev-

Table 1: Logic for Match/Unmatch Edges∗

Match Unmatch Logical Equivalent
allow deny self
deny allow ¬self
allow non-terminal self ∨ other
non-terminal allow ¬self ∨ other
non-terminal deny self ∧ other
deny non-terminal ¬self ∧ other

non-terminal1 non-terminal2

(self ∧ other1)∨
(¬self ∧ other2)

∗ Assuming a default deny sandbox profile

A

B C

AllowDeny

A

Not(B) C

AllowDeny

A

Any(Not(B), C)

Allow

All(A, Any(Not(B), C))

AllowDeny Deny

1) 2)

4)3)

Figure 2: Converting Graph to SBPL.

els of nested metafilters. Instead of encoding the nested
metafilter logic directly in Prolog, we first expand the
boolean equation into disjunctive normal form (DNF). The
DNF form lends itself nicely to encoding the logic in Prolog.
In the above Prolog fact template, [listOfFilters] repre-
sents the conjunction of list elements (i.e., require-all), and
multiple Prolog facts represent the disjunction of those con-
junctions (i.e., require-any). Finally, negation is represented
by a Prolog functor applied to a filter.

The following is an example of Prolog facts from a deny
default profile. Here, the process gains file-read* access
to /myFile if it has the A extension or does not have the B

extension.

allow(file -readSTAR ,
[literal ("/ myFile"),extension ("A")]).

allow(file -readSTAR ,
[literal ("/ myFile"),not(extension ("B"))]).

Converting SBPL into such Prolog facts is non-trivial for
three reasons. First, each filter may require a different set of
filter values. Second, metafilters can be nested indefinitely
and the regex and require-entitlement filters have implied
metafilters. Third, we must output our Prolog facts in dis-
junctive normal form. To address these challenges, we cre-
ated an SBPL to Prolog compiler using the ply [14] Python
library for Lex and Yacc.

Lex uses regular expressions to tokenize an input. This
allows us to match reserve words and distinguish between
types (e.g., strings, regular expressions, and booleans). A

TK_ALLOW = "allow"
TK_DENY = "deny"
TK_VERSION = "version"
TK_DEFAULT = "default"
TK_REQANY = "require-any"
TK_REQALL = "require-all"
TK_REQNOT = "require-not"
TK_REQENT = "require-entitlement"
TK_DEBUGMODE = "debug-mode"

TK_LP = r’\(’
TK_RP = r’\)’
TK_VARIABLE = r’[^\"\n#\ \(\)][^\n\ \(\)]*’
TK_STRING = r’"[^"]*"’
TK_REGEXP = r’\#"[^"]*"’
TK_BOOL = r’\#[tf]’

profile : version default ruleList
version : TK_LP TK_VERSION TK_VARIABLE TK_RP
default : TK_LP dec TK_DEFAULT TK_RP
dec : TK_ALLOW | TK_DENY
ruleList : rule ruleList |
rule : TK_LP dec TK_VARIABLE objList TK_RP

| TK_LP dec TK_VARIABLE TK_RP
objList : TK_LP object TK_RP objList

| TK_LP object TK_RP
| require objList | require

require : requireAny | requireAll | requireEnt
requireAny : TK_LP TK_REQANY objList TK_RP
requireAll : TK_LP TK_REQALL objList TK_RP
requireEnt : TK_LP TK_REQENT TK_STRING objList TK_RP

| TK_LP TK_REQENT TK_STRING TK_RP
object : TK_VARIABLE TK_STRING

| TK_VARIABLE regexList
| TK_VARIABLE TK_VARIABLE
| TK_VARIABLE TK_VARIABLE TK_STRING
| TK_REQNOT TK_LP object TK_RP
| TK_REQNOT TK_LP simpleReqEnt TK_RP
| TK_VARIABLE TK_BOOL
| TK_DEBUGMODE
| TK_VARIABLE TK_LP TK_VARIABLE TK_STRING

TK_VARIABLE TK_RPAREN
regexList : TK_REGEXP regexList

| TK_REGEXP
simpleReqEnt : TK_REQENT TK_STRING

Figure 3: SBPL Context Free Grammar.

simplified list of SBPL token definitions is provided in
Figure 3. A more complete listing would include many
more reserve words. However, for the sake of our com-
piler, it was sufficient to match most reserve words with
the TK VARIABLE token.

Yacc uses a context free grammar that recursively pro-
cesses a tokenized input. The grammar we defined for SBPL
is presented in Figure 3. Our implementation assumes a
correctly written SBPL profile is taken as input. However,
the implementation could be expanded to detect additional
syntactic or semantic errors in SBPL profiles. Our current
grammar allows us to recognize and process metafilters and
implied metafilters. For example, when Yacc detects a re-

quireAll expression we appropriately process the results of
the objList expression inside it.

While Yacc distinguishes metafilters, we must produce our
output in DNF. Our algorithm produces DNF by processing
a list of strings for each sandbox rule. For requireAll ex-
pressions, we append all elements of the processed objList to
each string in our list. For requireAny expressions, we create
a new string for each element of the processed objList. Each
new string is prepended with existing strings from our list
of strings on the list. When a require-not metafilter is de-
tected, we apply the not Prolog functor to the object inside

the require-not. Our grammar asssumes that require-not

metafilters will not contain other metafilters, however, they
may contain implied metafilters. If the object inside the
require-not is a regex filter, we must process the implied
require-any metafilter. To do this, we use De Morgan’s laws
and treat the result as a require-all metafilter applied to
each negated regex filter.

We attempt to preserve as much similarity as possible
when converting SBPL to Prolog, but some characters could
not be preserved. For example, the file-write* operation
must be converted to file-writeSTAR in Prolog because Pro-
log does not recognize ‘*’ as part of a functor name.

4.3 Policy Analysis
SandScout analyzes sandbox profiles using Prolog queries.

In this subsection, we describe how to construct useful
queries. Doing so also requires defining a collection of Pro-
log rules that model SBPL semantics (e.g., file-readSTAR is
one of the read operations). Finally, we describe the three
queries used for our vulnerability evaluation in Section 5.

Note that our current queries are limited to file access
operations on the container sandbox profile. The complete
information for file access control policy is available within
the policy itself. Other policies (e.g., those that protect
inter-process services and driver services) require a deeper
understanding of the semantic operations within system pro-
cesses. We plan to build automated program analysis tools
to consider these semantics in future work. Furthermore,
since we found the file access control operations to contain
a significant number of vulnerabilities, we limit this paper
to those operations. Finally, while SandScout can process
other sandbox profiles, we chose to focus on the container
profile because it is shared by all third-party applications
and hence provides the greatest attack surface.

4.3.1 Modeling SBPL and iOS Semantics
To effectively query the Prolog version of a sandbox pro-

file, we must first encode additional semantics of SBPL and
iOS. We accomplish this using additional Prolog rules.

The first type of Prolog rules we define address ar-
eas where file access filters overlap. For example, sub-

path("/var") and literal("/var/myFile") will both match
/var/myFile. We use this technique to limit one of our
queries to those files in /private/var/mobile/ which are more
likely to contain user data than other system files. Our abil-
ity to detect overlaps for regular expressions is limited. We
use the regex [12] library package for SWI-Prolog [17] to de-
termine if a literal file path satisfies a regular expression.
However determining if two regular expressions or a regular
expression and a subpath overlap is more complex. If Pro-
log is provided with a finite set of literal file paths to test,
this can be accomplished, but it is not part of our current
implementation.

The container sandbox profile is used to confine a variety
of applications that may be assigned different capabilities.
Therefore, it is desirable to ask queries from different envi-
ronment settings. For example, we can define Prolog rules
for describing the set of all capabilities, system capabilities,
or capabilities of third party applications. Note that entitle-
ments and extensions are capabilities a process may possess,
but some capabilities are only available to system applica-
tions.

We found that all sandbox rules providing access to third

party directories required the sandbox.container extension.
Note that all third party applications have dedicated direc-
tories where they may read and write private files. We con-
sider files outside of these dedicated third party directories
to be system files.

Finally, we encountered a special filter called vnode-type.
This filter matches any file that has the type specified by
the vnode-type’s filter value (e.g., vnode-type(directory)).
Therefore, this filter has the potential to match files regard-
less of their file path, and it should be considered when mak-
ing queries.

To encode the semantics of the iOS environment, we pro-
vide several predefined lists. Note that the ‘ ’ character in
prolog will match any value. Caps is the list of all capabilities
(i.e., [extension(_), entitlement(_)]). SysCaps is the list of
all capabilities reserved for system applications. Files is
the list of all filters that match file paths (i.e., [literal(_),
subpath(_), regex(_)]). SysPaths is the list of all filters that
match file paths to system files. Note that we consider any
file not inside a directory dedicated to a third party applica-
tion to be a system file (e.g., the Address Book or Preference
files). Reads is the list of all read operations. Writes is the
list of all write operations.

4.3.2 Example Policy Queries
We now describe the three policy queries that we use to

analyze the container sandbox profile in Section 5. These
queries are stated as invariants that must hold over the pol-
icy. Any Prolog facts that match these queries are potential
violations. Note that the queries listed below are simplified
for readability.

1. To prevent damage to the system, full write access
to system file paths, is reserved for apps with system
capabilities.

?- allow(file -writeSTAR ,Filters),
member(X,Filters),member(X,SysPaths),
intersection(Filters ,SysCaps ,[]).

2. To preserve user privacy, read access of any kind to
system file paths in /private/var/mobile/ must require
capabilities.

?- allow(Operation ,Filters),
member(Operation ,Reads),
((member(X,Filters),member(X,SysPaths),
overlapPaths(X,

subpath ("/ private/var/mobile /")));
(intersection(Filters ,Files ,[]),
member(vnode -type(_),Filters))),
intersection(Filters ,Caps ,[]).

3. To prevent unauthorized collusion among third-party
applications, rules providing any combination of write
and read access to system files must require capabili-
ties.

?- allow(Operation1 ,Filters1),
allow(Operation2 ,Filters2),
member(Operation1 ,Reads),
member(Operation2 ,Writes),
member(X,Filters1),member(X,SysPaths),
member(Y,Filters2),member(Y,SysPaths),
overlapPaths(X,Y),
intersection(Filters1 ,Caps ,[]).
intersection(Filters2 ,Caps ,[]).

Table 2: Attack Verification Functions
Test Parameters
requestAddressBook
fileExists filePath
readFileMetaData filePath
readFileContent filePath
createDirectory filePath
deleteAndHold filePath
createFileWithContent filePath
appendFileWithContent filePath
deleteFile filePath
lsDirectory directory
consumeStorage directory, numFiles
queryDatabase filePath, query
createSymLink source, destination
createHardLink source, destination
moveFile source, destination
setPermissions filePath, permissions

4.4 Attack Testing Application
The example queries in Section 4.3.2 may direct us to file

paths that are not interesting or exploitable (e.g., a readable
system file that does not contain sensitive information). To
assist in validating the analysis results and detecting sig-
nificant attacks, we created an application to test several
types of file system attacks against iOS. The attack testing
application also made it easier to create proof of concept
attacks when reporting our findings to Apple. If a test fails
because access is denied or the file path provided is invalid,
an appropriate error message is provided.

Note that it is important that the attacks are tested on an
iOS device, as the Xcode iOS simulator fails to validate at-
tacks confirmed on real devices. We speculate that the iOS
simulator has a simplified file system in which the files we
attacked did not exist or were not accessible. The iOS de-
vice running the attack application does not need to be jail-
broken. However, jailbroken devices can provide additional
feedback and insight for creating and evaluating attacks.

Table 2 lists the functions provided by our application.
The setPermissions function changes the Unix permissions
(i.e., read, write, or execute) for a file or directory. The
deleteAndHold function deletes a file and replaces that file
with a directory of the same name. We use this attack to
prevent iOS from using the affected file path. The con-

sumeStorage function copies a given number of 10 megabyte
files to a specified directory. The requestAddressBook func-
tion requests access to the AddressBook from the user. If
the user grants access, the application gains the AddressBook

sandbox extension.

5. RESULTS
In this section we quantify and categorize the sandbox

misconfigurations detected by our Prolog queries. We also
present seven classes of attacks that abuse the sandbox mis-
configurations detected by SandScout.

5.1 Prolog Query Results
We ran each of the Prolog Queries mentioned in Sec-

tion 4.3.2 on a collection of Prolog facts representing the
container profile for iOS 9.0.2. The results of these queries

Table 3: Query Results for iOS 9.0.2
Metrics Query 1 Query 2 Query 3
Matched Facts 10 39 20
False Negatives 0 1 1
Exploitable Facts 10 3 8
Exploitable Paths 9 2 4

were then evaluated using our attack testing application on
a jailbroken iPhone 5s running iOS 9.0.2. For each Prolog
fact matched by a query, we confirm that the file access op-
eration indicated by the fact was actually allowed on iOS
9.0.2. We also look for unique and significant attacks that
are possible because of these facts. Table 3 presents the
results of our evaluation.

In total, SandScout produced 1520 Prolog facts to repre-
sent the container profile from iOS 9.0.2. Prolog queries can
provide a significant reduction in the search space of rules
an analyst must evaluate when searching for flaws. For ex-
ample, Query 1 only produces 10 matching facts.

The False Negatives row represents facts that suggested
more restrictions than we encountered in testing. To the
best of our knowledge this occurred twice during our tests.
First, we encountered a regular expression suggesting that
we could write data to in a specific directory as long as the
file names matched the expression. During testing on our
jailbroken iOS 9.0.2 device, we found that we could cre-
ate and write data to any file in the directory. Second,
we were able to read the contents of the /private/var/-

mobile/Library/Preferences directory when we should have
only been allowed to read its metadata. Our non-jailbroken
iOS 9.3.1 device was not able to perform these unusual ac-
tions. Therefore, we speculate that these false negatives are
due to imperfections in SandBlaster or artifacts of the jail-
break process.

Some file paths could not be used for attacks for reasons
other than access control. Some allowed filepaths cannot be
used to read user data because there is no file at the path
we are allowed to read. If a third-party application has read
access to a filepath (e.g., /var/userSecrets.txt), but such a
file does not exist, then Apple may not consider the access to
be dangerous. Many of the system files our test application
was allowed to read did not contain interesting information.
Finally, files in /dev do not function as normal files, and we
do not consider them in our tests for Query 3. For example,
having read and write access to /dev/null does not mean it
can be used for collusion. Further investigation of attacks
against /dev files is left as future work.

The Exploitable Facts row shows the number of facts that
led us to unique, significant attacks. The Exploitable Paths
row represents the number of unique file paths we were able
to attack. For example, there may be multiple exploitable
facts indicating access to the same file path, but we would
consider all of these to be 1 exploitable file path. Matches
to our queries that are not classified as Exploitable Facts
should not be ignored. For example, files that did not exist
in the file system during our testing might be created under
conditions we are not aware of. It is also possible that some
files are only present on devices with unique functionality,
such as AppleTV devices or an iPad Pro.

5.2 Verified Attacks
We have discovered seven classes of attacks that abuse

misconfigurations in the container sandbox profile’s file ac-

cess rules. Each of these attack classes has been disclosed to
Apple and has been tested successfully on a non-jailbroken
iPod Touch 6 running iOS 9.3.1 (latest version at the time
of experiments).

Many of the vulnerabilities discovered by SandScout can
be addressed by modifying the sandbox profile. Apple has
included fixes for most of the vulnerabilities in the upcoming
release of iOS 10, which we did not yet have the opportu-
nity to verify at the time of writing. However, some of the
vulnerabilities required architectural changes, which are ac-
tively being addressed. To protect against these attacks,
Apple plans to monitor applications in the App Store for
corresponding behaviors.

5.2.1 Bypassing Privacy Settings
The following is a Prolog fact that matches Query 1 be-

cause the AddressBook extension is not a system capability.

allow(file -writeSTAR ,
[subpath ("/ Library/AddressBook /"),

extension (" AddressBook ")]).

Full write access allows for the creation of a hard link
to the AddressBook database, while an app has access to
it. The hard link allows the application to maintain ac-
cess to the AddressBook even after the user revokes access
through Privacy Settings. Hard link based access is not
limited to the app’s home directory. Malware can also
place the hard link in a directory accessible to all third-
party applications (e.g., /private/var/mobile/Library/-

Caches/com.apple.keyboards/). We found that /private/-

var/mobile/Library/Caches/com.apple.keyboards/ could be
used for collusion with Query 3. This allows colluding ap-
plications to access the AddressBook regardless of the user’s
Privacy Settings. We disclosed this attack to Apple and
they partially resolved it through CVE-2015-7001 by adding
a new sandbox operation, file-link, which governs the ability
to create hard links. By using SandBlaster, we detected that
the following rule was added to the container profile in iOS
9.1.

(allow file-link
(require-not

(subpath
"/Library/AddressBook")))

This sandbox rule prevents us from creating hard links to
files in the AddressBook’s directory. However, we have identi-
fied two methods to bypass this rule and perform the attack
despite Apple’s patch. First, we can simply move the Ad-

dressBook directory to a new location, make our hard links,
and move the AddressBook directory back to its original loca-
tion. This technique succeeds because we have file-write*

access to the AddressBook subpath, and moving a file does not
change the file’s inode. Second, our tests suggest that mali-
cious hard links to the AddressBook are not removed when up-
dating to newer versions of iOS. Therefore, devices attacked
before iOS 9 would still be compromised after upgrading to
later versions, because the new sandbox rule only prevents
the creation of new hard links to the protected file paths.

Due to the complexities of this attack, a policy-based so-
lution was not sufficient. Apple indicated that they plan to
move AddressBook access out of process to address the attack.

5.2.2 Privacy Leaks
The container sandbox profile allows third-party applica-

tions to read several system files that contain user data.

Some of these files contain sensitive data, and we consider
the leakage of this data to be a breach of user privacy.
The following are a subset of the Prolog facts that match
Query 2.

allow(file -readSTAR ,
[subpath ("/ Media/iTunes_Control/iTunes /")]).

allow(file -readSTAR ,
[subpath ("/ Library/Caches/GeoServices /")]).

allow(file -read -metadata ,
[vnode -type(directory)]).

iTunes Privacy Leaks: The /private/var/mobile/Medi-

a/iTunes_Control/iTunes directory is readable by any third-
party application. Within this directory are at least three
files containing private data related to iTunes and backing
up the iOS device. First, there is a database that contains
titles and metadata for iTunes purchases including books,
movies, music, podcasts, etc. Second, there is a file contain-
ing the user’s name and the names of computers the device
has backed up to. Third, there is a property list file that lists
applications the user has installed via iTunes. The informa-
tion leaked in this directory is valuable for targeted adver-
tising and device fingerprinting. Even music taste alone has
been found to reveal significant information about a user[45].
To address this attack, an additional privacy setting was
added to iOS. The new privacy setting regulates access to
user media.

Maps Privacy Leaks: The /private/var/mobile/Library/-

Caches/GeoServices directory is readable by any third-party
application. Within this directory are databases that con-
tain the locations a user has searched for in the Apple Maps
application. This application is the default mapping app
for iOS devices. Third-party applications can read these
databases and extract the locations a user has searched for
without obtaining permission to access location data. Third-
party applications can abuse this information to create tar-
getted ads or to blackmail users by threatening to reveal
the history of their location searches. To address this at-
tack, iOS 10 will move the geo-services cache to /Library/-

Caches/geod and make the directory only accessible by the
geod daemon.

Metadata Privacy Leaks: The container profile makes
metadata of all directories and symbolic links on the iOS
file system readable by third-party applications. The size
and timestamps of various directories allows third-party ap-
plications to infer information about the user. The following
three examples are only a few of the inferences that can be
made with the metadata available: 1) time of each photo
taken; 2) the last time an audio recording was created; 3) the
last time a game was played. We also find that drafts of
SMS messages are sometimes stored in directories named
after the phone number of the recipient of the message.
For example, a draft of a message to the phone number,
15551234567, would be stored in the directory in /var/mo-

bile/Library/SMS/Drafts/+15551234567/. A third-party ap-
plication can query the existence of directories named after
certain numbers to determine if the user is sending SMS
messages to certain people. Note that this last case is in-
teresting, because the metadata Prolog fact brought it to
our attention, but is not technically the cause of the flaw.
The ability to read the metadata of the directory enhances
the attack by also leaking the times that the user began or
modified the SMS draft. However, we are not aware of SBPL

filters that can limit the ability to query for the existence
of files. Therefore, Apple may need to extend SBPL to ad-
dress the SMS privacy leak vulnerability. As a short-term
fix, Apple plans to prevent third-party apps from using stat

on directories in mobile/Library/SMS.

Unauthorized Collusion: iOS provides official inter-app
communication channels, but these require special capabil-
ities. However, Query 3 allowed us to identify 4 unique
file paths that can be abused for unauthorized commu-
nication between applications without such capabilities.
/private/var/mobile/Media/com.apple.itunes.lock_sync and
/private/var/mobile/Library/Keyboard/LocalDictionary are
files that third-party apps can read and write. /private/-

var/mobile/Library/Caches/com.apple.keyboards/ is a direc-
tory where third-party apps have full read and write ac-
cess. /private/var/mobile/Library/DeviceRegistry/ is a di-
rectory where third-party apps can create any directories
with names consisting of numbers and capital letters. To
send a message, an app could create such directories, and
to receive a message, another app could check for the ex-
istence of or read the metadata of those directories. To
address these attacks, iOS 10 will remove write access
to com.apple.itunes.lock_sync, LocalDictionary, and De-

viceRegistry. Apple indicated an ongoing effort to remove
the com.apple.keyboards directory from iOS.

5.2.3 System Damage
We have identified two types of write-based attacks that

cause system damage because of the misconfigurations de-
tected by Query 1. Each of these attacks can be used for
ransomware, because the malicious app can undo the dam-
age after the attacker is paid. These attacks can be undone if
the user performs a factory reset of the device which deletes
all user data. Restoring from a backup image of the device
can also undo the damage, but many users may not have
backups. Both solutions are troublesome for a user and may
cause the loss of valuable information. To address the be-
low described attacks, iOS 10 will remove write access to
respective files. However, some cases such as the Address-

Book directory require architectural changes, as discussed in
Section 5.2.1.

Storage Consumption: Third-party apps can consume
all available storage space on the device by creating files
in system directories or appending large amounts of data
to system files. This space is not recovered by uninstalling
the app, nor does it appear in the Storage Manager as be-
ing used by the app. We found that copying a large file is
the most efficient and stealthy method of consuming space.
On an iPod Touch 6th generation, we can consume storage
space at a rate of approximately 100 megabytes per sec-
ond with negligible use of the CPU or memory. Attacking
the AddressBook directory in this way will cause the Storage
Manager to blame the Contacts application for consuming a
large amount of storage space. However, the Contacts appli-
cation is a system application, and it cannot be uninstalled.

Blocking Access To System Files: A third-party app
can delete system files if it has write access to, and replace
these files with directories of the same name. This prevents
iOS from repairing the file, because the directory is in the
way. The directory block is effective because iOS often cre-
ates files with randomized file name extensions and then
renames them to a non-randomized file name. If the non-

randomized file name is being held by a maliciously placed
directory, the renaming operation will fail. We speculate
that this technique helps evade link based attacks by replac-
ing any links via the renaming operation instead of directly
writing data to a predictable file path. Consider the follow-
ing Prolog fact from the container profile of iOS 9.0.2.

allow(file -writeSTAR ,
[regex ("^/ EmojiPreferences [.] plist"/i)]).

Note that the regular expression does not end in a $ sym-
bol, which means it only needs to match the beginning of
a string. This allows iOS to create files with randomized
names such as EmojiPreferences.plist.sfjk32a and rename
them to EmojiPreferences.plist. Deleting the AddressBook

database and replacing it with a directory causes observable
damage to the system. The four effects of the attack are:
1) The Contacts app will show an empty list instead of con-
tacts. 2) Adding new contacts will fail. 3) The Contacts
app will not appear in the storage manager. 4) Backing up
the device with iTunes will fail.

Third-party applications can delete or move system direc-
tories they have write access to. They can also change the
Unix permissions of these directories. These actions prevent
system applications from being able to access the system
files in those directories.

6. LIMITATIONS
In this section we discuss the limitations of each compo-

nent of SandScout. We also propose future work to address
these limitations.

Sandbox Decompiler: SandBlaster is a reverse engineer-
ing tool, and the sandbox profiles it produces have not been
proven to be semantically equivalent to the originals. How-
ever, we find that it provides significant insight, and it was
sufficient to lead us to numerous vulnerabilities. If Apple
adopts the SandScout framework, this will not be a concern
for them because they have the original profiles in SBPL
format.

Another limitation of SandBlaster is its dependence on
leaked firmware keys for decrypting iOS firmware. Firmware
keys for an iOS version are usually published [6] by reverse
engineers a few weeks after the firmware version is released.
Note that firmware keys are more readily available than jail-
breaks. At the time of writing, the latest public jailbreak
is for iOS 9.1, but the latest released firmware keys are for
iOS 9.3.1.

Policy Modeling: Our SBPL to Prolog compiler makes
four assumptions. First, it assumes the SBPL profile is
written correctly. With additional engineering, our compiler
could detect errors in SBPL, but we saw this as unnecessary
for SandScout. Second, we assume the version information
will appear on the first line, and the default decision on the
second line. Third, we assume that the filters and metafil-
ters we have encountered already are the only ones we need
to compile. A new filter or metafilter may not match the
expressions in our grammar, and the implementation would
need to be updated. Fourth, we assume that require-not

metafilters will not contain other metafilters. SandBlaster
helps us control for this, and we can remove this assumption
through additional engineering.

Policy Analysis: Our Prolog queries are limited to file ac-
cess. Reverse engineering the other operations controlled by

the sandbox is left as future work. We do not claim that
our queries have comprehensively detected all flaws in file
access. However, we believe that we have identified a suffi-
cient number of vulnerabilities to demonstrate SandScout’s
utility.

Our queries do not consider overlaps between regular ex-
pressions and regular expressions or regular expressions and
subpaths. We speculate that this can be accomplish by pro-
viding Prolog with a finite list of literal file paths. Prolog
could then determine if any of the file paths satisfy both reg-
ular expressions or the regular expression and the subpath.

Attack Verification: We used a jailbroken iPhone 5s run-
ning iOS 9.0.2 for our attack verification. We chose to use a
jailbroken device because it gave us more control and aware-
ness of the file system. We chose to analyze the container
profiles from iOS 9.0.2 because this was the latest version of
iOS that we had running on a jailbroken device. However, it
is possible that artifacts of the jailbreak affected our tests.
In two cases, we encountered false negatives and were able to
perform actions that our decompiled profile suggested would
be denied. To address this concern we confirmed that each of
our 7 attack classes worked on a non-jailbroken iPod Touch
6 running iOS 9.3.1.

Finally, it is possible that we may have missed attack op-
portunities during attack verification. For example, some of
the files we had read access to seemed to contain obfuscated
data. With more analysis these may be found to contain
sensitive information.

7. RELATED WORK
The initial iOS security research in academic venues

focused on privacy threats in third-party applications.
PiOS [29] uses static taint analysis to detect privacy leaks.
Han et al. [35] compare iOS and Android applications,
finding iOS applications access significantly more privacy-
sensitive APIs than Android applications.

More recent iOS application security research has fo-
cused on the potential for malware. Wang et al. [48] pro-
posed Jekyll attacks, which consider a malicious developer
that hides vulnerabilities within an application. The work
demonstrates a fundamental limitation in Apple’s vetting
process. The concepts behind Jekyll apps were indepen-
dently discovered by Han et al. [33] and further enhanced
by Bucicoiu et al. [22]. Jekyll apps leverage the ability to
call APIs in private frameworks. Wang et al. [47] created
proof of concept attacks for infecting iOS devices with ma-
licious applications via exploiting the iTunes synching pro-
cess. iRiS [28] uses a combination of static and dynamic
analysis to detect indirect invocation of APIs in private
frameworks and has detected an ad library that abuses pri-
vate frameworks. Xing et al. [52] demonstrate a new at-
tack vector for iOS malware by exploiting cross-application
interfaces. Finally, Kurtz et al. [40] studied ways for iOS
applications to fingerprint devices. In the process of their
analysis, they identified flaws in the iOS sandbox; however,
they give no detail on how the flaws were discovered.

There have been several efforts to improve iOS security.
Davi et al. [26] propose MoCFI to add control-flow integrity
to iOS applications. If applied, MoCFI would significantly
mitigate Jekyll apps. MoCFI was extended by Werthmann
et al. [50] to enforce fine-grained access control rules. Their
PSiOS tool instruments each function call to validate the

function to be called along with the provided parameters.
Unfortunately, PSiOS and MoCFI cause unacceptably high
performance overhead and require jailbreaks or significant
changes to iOS for them to be implemented. To address
these issues, XiOS [22] deploys static binary instrumentation
to insert a reference monitor into existing iOS applications.
This reference monitor aims at hiding crucial runtime ad-
dresses populated by the dynamic loader. While XiOS pre-
vents the exploits used in existing Jekyll-related attacks, the
reference monitor resides in the same address space as the
malicious application. Therefore, an adversary can poten-
tially compromise the reference monitor or launch runtime
attacks to bypass the XiOS policy checks.

Much of the public knowledge about the Apple’s sandbox-
ing mechanism is due to the work of non-academic reverse
engineers. Blazakis was first in describing the internals of
the Apple sandbox [21], and has released a set of tools to
aid sandboxing analysis. However, significant changes to the
iOS sandbox in iOS 7 prevent his tool from functioning prop-
erly on iOS 7 or later. The container sandboxing profile for
iOS 4 has been largely studied by Zovi [25]. He also shared
a simplified representation of the iOS 4 container profile.
Iozzo [38] gave a presentation on Apple’s sandbox in which
he suggests potentially vulnerable areas where researchers
might find attacks. His slides include graph visualizations
of some sandbox profiles for OS X. Kydyraliev [41] and the
iOS Hacker’s Handbook [42] describe the internal mecha-
nisms of Apple’s dynamic capabilities called sandbox exten-
sions. An unofficial documentation of the Apple sandbox
language has been given in a public whitepaper [32]. How-
ever, this guide is significantly outdated and now it only
covers a minority of the sandboxing operations available for
iOS. Esser [31] updated Blazakis’s tools to create a sand-
box extractor and pseudo-decompiler which converts builtin
iOS sandbox profiles into an intermediate graph representa-
tion. Our own sandbox decompiler uses functionality from
the tools of Blazakis and Esser, but ours is the first tool to
fully decompile sandboxes for iOS 7, 8, and 9.

We are the first to systematically analyze sandbox pro-
files for iOS. Watson [49] provided a brief overview of iOS
access control, but his work did not analyze specific poli-
cies. Policy analysis itself is a broad area of research. Here,
we highlight several works using logic-based programming
in Prolog. PALMS [36] models SELinux policy in Prolog to
study information flow properties of its MLS enforcement.
Similarly, PIDSI [43] uses Prolog to verify flow properties
of SELinux policy governing trusted programs. Note that
the iOS SBPL and SELinux policy languages are semanti-
cally different. SBPL assumes one subject, whereas SELinux
includes many subjects (domains). Therefore, many proper-
ties modeled in Prolog (e.g., Trusted Computing Base iden-
tification) for SELinux do not directly apply to SBPL. Chen
et al. [24] used Prolog to model SELinux and AppArmor
policies in order to evaluate the protection quality of the
policies with respect to various attack scenarios. In con-
trast, we seek to automatically identify misconfigurations
that violate the security requirements of stakeholders. An
early version of Kirin [30] uses Prolog to define policy invari-
ants over Android permissions assigned to third-party appli-
cations to detect dangerous functionality. Our SandScout
queries are conceptually similar, but SBPL is significantly
more complex than Android’s permission model, including
system calls and regular expressions.

8. CONCLUSIONS
This paper presented the first systematic study of the iOS

container sandbox profile, which confines third-party appli-
cations. Our SandScout framework automatically extracts
and decompiles binary sandbox profiles into human read-
able SBPL. SandScout then translates the SBPL policies
into Prolog facts. By modeling sandbox policy as a logic-
based program, we are able to construct queries to test secu-
rity properties. We construct three file-based queries for the
container sandbox profile and use them to analyze iOS 9.0.2.
We then use an assisted verification tool to further refine the
set of potential policy vulnerabilities. In studying the query
results, we identify seven classes of exploitable vulnerabili-
ties. Each of these vulnerabilities was also confirmed on a
non-jailbroken iOS 9.3.1 device.

Our analysis of the iOS container sandbox profile is only
the first step in systematically evaluating the access control
in iOS. First, our Prolog queries are limited to file-based
properties. The container sandbox profile also governs other
security relevant system calls such as Mach IPC. Evaluat-
ing this policy requires additional semantics from the iOS
environment, which we plan to incorporate in future work.
Furthermore, we plan to extend our analysis to those aspects
of iOS access control outside of the sandbox.

9. ACKNOWLEDGMENTS
We thank Adwait Nadkarni, Micah Bushouse, Ben

Andow, Isaac Polinsky, Akash Verma, and the Wolfpack Se-
curity and Privacy Research (WSPR) lab as a whole for
their helpful comments. We also thank Dino Dai Zovi for
his advice on reverse engineering iOS sandbox profiles.

This work was supported in part by the Army Research
Office (ARO) grants W911NF-16-1-0299 and W911NF-
14-1-0537, the National Science Foundation (NSF) CA-
REER grant CNS-1253346, the German Science Foundation
(project S2, CRC 1119 CROSSING), the European Union’s
Seventh Framework Programme (643964, SUPERCLOUD),
and the German Federal Ministry of Education and Research
within CRISP. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the fund-
ing agencies.

10. REFERENCES
[1] AceDeceiver: First iOS Trojan Exploiting Apple DRM

Design Flaws to Infect Any iOS Device.
http://researchcenter.paloaltonetworks.com/2016/03/
acedeceiver-first-ios-trojan-exploiting-apple-drm-
design-flaws-to-infect-any-ios-device/. Accessed:
2016-05-05.

[2] Antid0te 2.0 - aslr in ios. http:
//conference.hackinthebox.org/hitbsecconf2011ams/
materials/D1T1%20-%20Stefan%20Esser%20-
%20Antid0te%202.0%20-%20ASLR%20in%20iOS.pdf.
Accessed: 2016-02-15.

[3] The apple sandbox. https:
//media.blackhat.com/bh-dc-11/Blazakis/BlackHat
DC 2011 Blazakis Apple%20Sandbox-Slides.pdf.
Accessed: 2016-02-15.

[4] Download.
https://developer.apple.com//ios/download/.
Accessed: 2016-04-20.

http://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
http://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
http://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D1T1%20-%20Stefan%20Esser%20-%20Antid0te%202.0%20-%20ASLR%20in%20iOS.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D1T1%20-%20Stefan%20Esser%20-%20Antid0te%202.0%20-%20ASLR%20in%20iOS.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D1T1%20-%20Stefan%20Esser%20-%20Antid0te%202.0%20-%20ASLR%20in%20iOS.pdf
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D1T1%20-%20Stefan%20Esser%20-%20Antid0te%202.0%20-%20ASLR%20in%20iOS.pdf
https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple%20Sandbox-Slides.pdf
https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple%20Sandbox-Slides.pdf
https://media.blackhat.com/bh-dc-11/Blazakis/BlackHat_DC_2011_Blazakis_Apple%20Sandbox-Slides.pdf
https://developer.apple.com//ios/download/

[5] dsc extractor.cpp.
https://opensource.apple.com/source/dyld/dyld-195.
6/launch-cache/dsc extractor.cpp. Accessed:
2016-05-19.

[6] Firmware Keys.
https://www.theiphonewiki.com/wiki/Firmware Keys.
Accessed: 2016-04-19.

[7] iTunes Preview.
https://itunes.apple.com/us/genre/ios/id36?mt=8.
Accessed: 2016-05-04.

[8] Joker. http://newosxbook.com/tools/joker.html.
Accessed: 2016-05-19.

[9] Lekensteyn/dmg2img.
https://github.com/Lekensteyn/dmg2img. Accessed:
2016-05-19.

[10] lzssdec.cpp. http://nah6.com/˜itsme/cvs-
xdadevtools/iphone/tools/lzssdec.cpp. Accessed:
2016-05-19.

[11] Multiple iOS apps found to be harvesting Snapchat
user credentials. http://9to5mac.com/2016/03/08/ios-
apps-snapchat-harvest-credentials/. Accessed:
2016-05-05.

[12] Package ”regex”.
http://www.swi-prolog.org/pack/list?p=regex.
Accessed: 2016-05-19.

[13] Pirated App Store client for iOS found on Apple’s App
Store. https://www.helpnetsecurity.com/2016/02/22/
pirated-app-store-client-ios-found-apples-app-store/.
Accessed: 2016-05-05.

[14] PLY (Python Lex-Yacc).
http://www.dabeaz.com/ply/. Accessed: 2016-05-17.

[15] Smart phones overtake client PCs in 2011.
http://www.canalys.com/newsroom/smart-phones-
overtake-client-pcs-2011. Accessed: 2016-05-18.

[16] Smartphone OS Market Share, 2015 Q2. http://www.
idc.com/prodserv/smartphone-os-market-share.jsp.
Accessed: 2016-05-18.

[17] SWI Prolog. http://www.swi-prolog.org/. Accessed:
2016-05-19.

[18] Trustedbsd mandatory access control (mac)
framework. http://www.trustedbsd.org/mac.html.
Accessed: 2015-11-06.

[19] VFDecrypt.
https://www.theiphonewiki.com/wiki/VFDecrypt.
Accessed: 2016-05-19.

[20] M. Alam, J.-P. Seifert, Q. Li, and X. Zhang. Usage
control platformization via trustworthy selinux. In
Proceedings of the 2008 ACM symposium on
Information, computer and communications security,
pages 245–248. ACM, 2008.

[21] D. Blazakis. The apple sandbox. Arlington, VA,
January, 2011.

[22] M. Bucicoiu, L. Davi, R. Deaconescu, and A.-R.
Sadeghi. Xios: Extended application sandboxing on
ios. In ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’15, 2015.

[23] S. Byford. Apple removes malware-infected App Store
apps after major security breach. The Verge, Sept. 15.
http://www.theverge.com/2015/9/20/9362585/
xcodeghost-malware-app-store-security.

[24] H. Chen, N. Li, and Z. Mao. Analyzing and comparing

the protection quality of security enhanced operating
systems. In NDSS, pages 11–16, 2009.

[25] D. A. Dai Zovi. Apple ios 4 security evaluation. Black
Hat USA, 2011.

[26] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi. Mocfi: A
framework to mitigate control-flow attacks on
smartphones. In NDSS, 2012.

[27] R. Deaconescu, L. Deshotels, M. Bucicoiu, W. Enck,
L. Davi, and A.-R. Sadeghi. Sandblaster: Reversing
the apple sandbox. Technical Report
arXiv:1608.04303, Aug 2016.

[28] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu.
iris: Vetting private api abuse in ios applications. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 44–56.
ACM, 2015.

[29] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios:
Detecting privacy leaks in ios applications. In NDSS,
2011.

[30] W. Enck, M. Ongtang, and P. McDaniel. Mitigating
Android Software Misuse Before It Happens. Technical
Report NAS-TR-0094-2008, Network and Security
Research Center, Department of Computer Science
and Engineering, Pennsylvania State University,
University Park, PA, USA, Sep 2008.

[31] S. Esser. ios8 containers, sandboxes and entitlements.
http://www.slideshare.net/i0n1c/ruxcon-2014-stefan-
esser-ios8-containers-sandboxes-and-entitlements.
Accessed: 2015-11-6.

[32] fG! Apple’s sandbox guide v 1.0.
http://reverse.put.as/wp-content/uploads/2011/09/
Apple-Sandbox-Guide-v1.0.pdf. Accessed: 2015-02-04.

[33] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng,
D. Gao, Y. Li, and J. Zhou. Launching generic attacks
on ios with approved third-party applications. In
Applied Cryptography and Network Security, pages
272–289. Springer, 2013.

[34] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao,
Y. Li, and J. Zhou. Launching generic attacks on iOS
with approved third-party applications. In Applied
Cryptography and Network Security, ACNS ’13, 2013.

[35] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng.
Comparing mobile privacy protection through
cross-platform applications. 2013.

[36] B. Hicks, S. Rueda, L. S. Clair, T. Jaeger, and
P. McDaniel. A Logical Specification and Analysis for
SELinux MLS Policy. ACM Transaction on
Information and System Security, 13(3), 2010.

[37] B. Hicks, S. Rueda, L. St Clair, T. Jaeger, and
P. McDaniel. A logical specification and analysis for
selinux mls policy. ACM Transactions on Information
and System Security (TISSEC), 13(3):26, 2010.

[38] V. Iozzo. A sandbox odyssey. https://prezi.com/
lxljhvzem6js/a-sandbox-odyssey-infiltrate-2012/.
Accessed: 2015-11-7.

[39] T. Jaeger, R. Sailer, and X. Zhang. Analyzing
integrity protection in the selinux example policy. In
Proceedings of the 12th conference on USENIX
Security Symposium-Volume 12, pages 5–5. USENIX
Association, 2003.

https://opensource.apple.com/source/dyld/dyld-195.6/launch-cache/dsc_extractor.cpp
https://opensource.apple.com/source/dyld/dyld-195.6/launch-cache/dsc_extractor.cpp
https://www.theiphonewiki.com/wiki/Firmware_Keys
https://itunes.apple.com/us/genre/ios/id36?mt=8
http://newosxbook.com/tools/joker.html
https://github.com/Lekensteyn/dmg2img
http://nah6.com/~itsme/cvs-xdadevtools/iphone/tools/lzssdec.cpp
http://nah6.com/~itsme/cvs-xdadevtools/iphone/tools/lzssdec.cpp
http://9to5mac.com/2016/03/08/ios-apps-snapchat-harvest-credentials/
http://9to5mac.com/2016/03/08/ios-apps-snapchat-harvest-credentials/
http://www.swi-prolog.org/pack/list?p=regex
https://www.helpnetsecurity.com/2016/02/22/pirated-app-store-client-ios-found-apples-app-store/
https://www.helpnetsecurity.com/2016/02/22/pirated-app-store-client-ios-found-apples-app-store/
http://www.dabeaz.com/ply/
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.swi-prolog.org/
http://www.trustedbsd.org/mac.html
https://www.theiphonewiki.com/wiki/VFDecrypt
http://www.theverge.com/2015/9/20/9362585/xcodeghost-malware-app-store-security
http://www.theverge.com/2015/9/20/9362585/xcodeghost-malware-app-store-security
http://www.slideshare.net/i0n1c/ruxcon-2014-stefan-esser-ios8-containers-sandboxes-and-entitlements
http://www.slideshare.net/i0n1c/ruxcon-2014-stefan-esser-ios8-containers-sandboxes-and-entitlements
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
https://prezi.com/lxljhvzem6js/a-sandbox-odyssey-infiltrate-2012/
https://prezi.com/lxljhvzem6js/a-sandbox-odyssey-infiltrate-2012/

[40] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and
F. Freiling. Fingerprinting mobile devices using
personalized configurations. Proceedings on Privacy
Enhancing Technologies, 2016(1):4–19, 2016.

[41] M. Kydyraliev. Mining mach services within os x
sandbox. http://2013.zeronights.org/includes/docs/
Meder Kydyraliev - Mining Mach Services within
OS X Sandbox.pdf. Accessed: 2015-11-6.

[42] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo,
and R.-P. Weinmann. iOS Hacker’s Handbook. John
Wiley & Sons, 2012.

[43] S. Rueda, D. H. King, and T. Jaeger. Verifying
Compliance of Trusted Programs. In Proceedings of
the USENIX Security Symposium, 2008.

[44] A. Sasturkar, P. Yang, S. D. Stoller, and
C. Ramakrishnan. Policy analysis for administrative
role based access control. In Computer Security
Foundations Workshop, 2006. 19th IEEE, pages
13–pp. IEEE, 2006.

[45] A. Voida, R. E. Grinter, N. Ducheneaut, W. K.
Edwards, and M. W. Newman. Listening in: practices
surrounding itunes music sharing. In Proceedings of
the SIGCHI conference on Human factors in
computing systems, pages 191–200. ACM, 2005.

[46] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning,
D. Xu, W. Zhou, and A. M. Azab. Easeandroid:
Automatic policy analysis and refinement for security
enhanced android via large-scale semi-supervised
learning. In 24th USENIX Security Symposium
(USENIX Security 15), pages 351–366, 2015.

[47] T. Wang, Y. Jang, Y. Chen, S. Chung, B. Lau, and
W. Lee. On the feasibility of large-scale infections of
ios devices. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 79–93, 2014.

[48] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll
on ios: When benign apps become evil. In Usenix
Security, volume 13, 2013.

[49] R. N. M. Watson. TrustedBSD: Adding Trusted
Operating System Features to FreeBSD. In
Proceedings of the USENIX Annual Technical
Conference, FREENIX Track, 2001.

[50] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and
T. Holz. Psios: bring your own privacy & security to
ios devices. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and
communications security, pages 13–24. ACM, 2013.

[51] C. Xiao. Yispecter.
http://researchcenter.paloaltonetworks.com/2015/10/
yispecter-first-ios-malware-attacks-non-jailbroken-ios-
devices-by-abusing-private-apis/. Accessed:
2015-10-21.

[52] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao,
S.-M. Hu, and X. Han. Cracking app isolation on
apple: Unauthorized cross-app resource access on mac
os. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications
Security, pages 31–43. ACM, 2015.

[53] G. Zanin and L. V. Mancini. Towards a formal model
for security policies specification and validation in the
selinux system. In Proceedings of the ninth ACM
symposium on Access control models and technologies,
pages 136–145. ACM, 2004.

http://2013.zeronights.org/includes/docs/Meder_Kydyraliev_-_Mining_Mach_Services_within_OS_X_Sandbox.pdf
http://2013.zeronights.org/includes/docs/Meder_Kydyraliev_-_Mining_Mach_Services_within_OS_X_Sandbox.pdf
http://2013.zeronights.org/includes/docs/Meder_Kydyraliev_-_Mining_Mach_Services_within_OS_X_Sandbox.pdf
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/

	Introduction
	Background
	iOS Security Mechanisms
	Sandbox Profile Language (SBPL)

	Overview
	Design
	Decompiling Sandbox Profiles
	Modeling Sandbox Profiles in Prolog
	Policy Analysis
	Modeling SBPL and iOS Semantics
	Example Policy Queries

	Attack Testing Application

	Results
	Prolog Query Results
	Verified Attacks
	Bypassing Privacy Settings
	Privacy Leaks
	System Damage

	Limitations
	Related Work
	Conclusions
	Acknowledgments
	References

