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Abstract—Software depends on upstream projects that reg-
ularly fix vulnerabilities, but the documentation of those
vulnerabilities is often unreliable or unavailable. Automating
the collection of existing vulnerability fixes is essential for
downstream projects to reliably update their dependencies
due to the sheer number of dependencies in modern software.
Prior efforts rely solely on incomplete databases or imprecise
or inaccurate statistical analysis of upstream repositories. In
this paper, we introduce Differential Alert Analysis (DAA) to
discover vulnerability fixes in software projects. In contrast
to statistical analysis, DAA leverages static analysis security
testing (SAST) tools, which reason over code context and
semantics. We provide a language-independent implemen-
tation of DAA and show that for Python and Java based
projects, DAA has high precision for a ground-truth dataset of
vulnerability fixes — even with noisy and low-precision SAST
tools. We then use DAA in two large-scale empirical studies
covering several prominent ecosystems, finding hundreds of
resolved alerts, including many never publicly disclosed. DAA
thus provides a powerful, accurate primitive for software
projects, code analysis tools, vulnerability databases, and
researchers to characterize and enhance the security of
software supply chains.

1. Introduction

Open-source software (OSS) plays a significant role in
the security of nearly all software used in production. In a
recent report, 97% of codebases use OSS components [56].
Unfortunately, a shortcoming is the vulnerabilities within
OSS dependencies [26]. There is a long-held assumption
that the “many eyes” of developers working on OSS will
have fewer vulnerabilities. Nevertheless, vulnerabilities are
routinely discovered, even for high-profile projects (e.g.,
Log4j). These vulnerabilities may be announced through
vulnerability databases [21], [43], [17], vendor mailing
lists, changelogs, or simply not at all.

Regardless, with or without security advisories, devel-
opers and companies struggle to know if they need to
update their dependencies [50]. While current advisory
approaches bring awareness of security fixes, they often
lack details on the vulnerability context. Developers need
to know if their project is impacted in a way that matters,
so they need insight into where the fix was and what type of
fix took place in a security patch. Detailed fix information
allows developers to better triage security patches within
their software supply chain.

Limited work has been conducted on finding fixes in
a code base. However, this prior work produces a binary

classification of vulnerability fixes for commits, leaving
context about the vulnerability unknown or the precise
location [51], [61], [66], [42]. Additionally, once the fix is
found, prior work relies on manual analysis to determine
if project owners disclosed a fix. Closely related work
on discovering vulnerabilities corresponding to a security
fix assumes the existence of the fix is known [63], [37].
Therefore, we pose the broad research question: How can
developers find fixes, with context, when they may not be
announced — or even known to the developers?

In this paper, we answer this by introducing Differential
Alert Analysis (DAA), a language-agnostic algorithm that
uses the outputs of lightweight and imprecise off-the-shelf
static analysis security tools (SAST) to discover resolved
vulnerabilities in software projects without relying on
an announcement. The key insight driving DAA is that
when a fix is introduced, it will eliminate a SAST alert
present in the prior version. We evaluate DAA against
Python and Java to measure its detection performance
of resolved vulnerabilities using a ground-truth database
of 67 vulnerabilities from SafetyDB [48] and Project
KB [46]. We show that when using a SAST tool with
low precision, DAA had a precision of 98.08% and a
recall of 64.56% across a ground-truth database. DAA
serves as an accurate language-independent technique for
identifying vulnerability fixes.

Next, we further demonstrate the value of DAA by
performing large-scale breadth and depth studies of NPM,
Go, PyPI, and Maven projects using SAST alerts provided
by the LGTM [34] platform. Our breadth study considers
the last ten commits of each project within those ecosys-
tems. Our depth study is on the latest 1,000 commits for
the 1,000 highest depended upon NPM, Go, PyPI, and
Maven projects indexed by LGTM. In total, DAA tagged
284 projects with resolved alerts. We then developed an
automated approach to determine if an associated security
advisory was present for the resolved alert. We found
111 (52.86%) projects with resolved alerts that had no
announcements. These findings confirm the necessity of fix
discovery techniques independent of prior announcements.

We make the following contributions:
• We show that differential analysis over SAST alerts

can efficiently identify vulnerability fixes in OSS.
DAA leverages the wealth of knowledge encoded into
existing SAST tools and bypasses the intense manual
collection of ground-truth datasets for training. We
demonstrate that even noisy off-the-shelf SAST tools
have valuable utility when repurposed with DAA.

• We scale the analysis of silent fixes to tens of thou-
sands of applications. The largest dataset studied in
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prior work is on the order of tens of applications,
whereas we gracefully scale to thousands of applica-
tions. Additionally, we provide an automated approach
for identifying announcement levels of resolved alerts.
DAA is thus a practical mechanism for security
vendors and project maintainers to inform developers
of vulnerable dependencies.

• We discover and validate silent fixes throughout
multiple ecosystems. Silent fixes were present in
both the most widely used projects and in lesser-
used projects for niche functions. We apply DAA to
projects analyzed by LGTM and found 237 silent fixes,
indicating that announcement agnostic techniques like
DAA are essential to secure software supply chains.

We note that whether or not to release a security
advisory for a patched vulnerability is a long-time debate
for the software community. Some believe silently patching
vulnerabilities is the safest option for the community [58].
For those that update software dependencies automatically,
the security advisory would not matter. However, recent
software supply chain attacks (e.g., SolarWinds [14]) have
caused many software companies to reconsider updat-
ing dependencies automatically. Furthermore, software
companies commonly maintain internal custom forks of
open source projects, and importing upstream patches is a
manual and time-consuming practice. We believe DAA is
a valuable primitive for providing greater transparency for
vulnerability fixes and, consequently, will lead to a renewed
debate on the benefits of disclosing fixed vulnerabilities.
Availability: We have released our proof-of-concept im-
plementation of DAA1. In addition to the software, the
ground truth datasets used in the evaluation are available.

The remainder of this paper proceeds as follows.
Section 2 motivates and defines our problem. Section 3
overviews our approach. Section 4 describes the design
and theoretical intuition behind DAA. Section 5 evaluates
DAA detection performance. Section 6 studies the LGTM
ecosystem. Section 7 discusses DAA and responsible
disclosure to the Global Security Database [9]. Section 8
overviews related work. Section 9 concludes.

2. When Fixes Are Silent

Software maintainers rely on security advisories to
determine when to update third-party libraries and de-
pendencies. Unfortunately, the developers of libraries and
dependencies may not issue security advisories when they
fix a vulnerability, leaving downstream projects unaware
of the fix. This section will formally define this notion
and other concepts fundamental to this work.

To make this discussion concrete, consider Django
Tastypie and TensorFlow Models, two Python projects
available in Python Package Index (PyPI), the official
repository for Python projects. Both Django Tastypie
version 0.9.9 (Figure 1) and TensorFlow Models version
2.4.0 (Figure 2) call yaml.load(), a deprecated function
allowing arbitrary code execution. Instead, the PyYAML
documentation recommends using yaml.safe_load()or
a safe loader type. Both Djanjo TastyPie and TensorFlow
Models fixed these vulnerabilities in subsequent versions,
as shown in Figures 1 and 2.

1. https://github.com/s3c2/daa

1 def from_yaml(self, content):
2 """
3 Given some YAML data, returns a Python dictionary

of the decoded data.
4 """
5 if yaml is None:
6 raise ImproperlyConfigured("Usage of the YAML

aspects requires yaml.")
7
8 - return yaml.load(content)
9 + return yaml.safe_load(content)

Figure 1: django-tastypie 0.9.9 to 0.9.10 patch

1 def read_yaml_to_params_dict(file_path):
2 """Reads a YAML file to a ParamsDict."""
3 with tf.io.gfile.GFile(file_path, ’r’) as f:
4 - params_dict = yaml.load(f, Loader=yaml.FullLoader)
5 + params_dict = yaml.load(f, Loader=yaml.SafeLoader)
6 return ParamsDict(params_dict)

Figure 2: tf-models-official 2.4.0 to 2.5.0 patch

While the patches are nearly identical, the two project
maintainers took drastically different approaches to notify
others about the fixed vulnerability. Django Tastypie
released a security advisory urging users to upgrade
to version 0.9.10 [29]. In contrast, a pull request was
opened on January 25, 2021, to fix an arbitrary code
execution within version 2.4.0 of TensorFlow Models
(tf-models-official) due to the vulnerable use of
yaml.load() [24]. An attached proof of concept shows
how arbitrary code could be executed through a custom
YAML file [28]. The same day, the pull request was merged
into the main branch. The official Google team validated
the request and awarded a small bug bounty to the issuer of
the pull request. Almost four months after the pull request,
version 2.5.0 of tf-models-official was released to
PyPI with the patch. However, no official security advisory
was released. These two instances provide clear examples
of an announced and a silent fix, defined as follows.

Definition 1 (Vulnerability Fix ∆v̄). Let P be a software
project, and P ′ be the subsequent version of P . A vulner-
ability fix ∆v̄ has occurred if there exists a vulnerability
v in P that is not in P ′.

Definition 2 (Announced and Silent Fixes). Let ∆v̄ be
the vulnerability fix for a vulnerability v that appears
in P but not P ′. We say that ∆v̄ is an announced fix
if there exists a security advisory for P ′ of v or ∆v̄.
Security advisories should be in a location where it would
be reasonable for a developer using the project to check for
updates, including the information listed in a changelog,
a news post owned by the project, a repository-integrated
security advisory, or a CVE. Otherwise, we consider ∆v̄

to be a silent fix if no mention in a changelog (e.g., notes
identifying version changes or making use of release/tags
tab within GitHub) or a CVE is available. Because it is
unreasonable to expect a developer to read every commit
in every dependency, a commit-log message alone is not
a vulnerability announcement.

This paper identifies silent fixes by first identifying vul-
nerability fixes and then determining whether or not the fix
was announced or silent. We discover vulnerability fixes by
leveraging the wealth of existing tools to discover security
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Figure 3: A high-level architecture of our approach.

vulnerabilities. For this paper, we limit our discussion to
static analysis security testing (SAST) tools. However, we
expect the methodology can be expanded to other types of
vulnerability detection tools. Our evaluation in Sections 5
uses the popular tools Bandit [47] and CodeQL [16] for
Python, and CodeQL and SpotBugs [54] for Java.

Definition 3 (Alert). Running a SAST tool on a software
project P produces a set of alerts A. Each alert a ∈ A
indicates a possible security vulnerability. For most SAST
tools, an alert a is a tuple (τ, line, file) that defines the
alert type τ , as well as line location line and filename file
where the SAST tool indicates a security vulnerability.

For example, a = (yaml load, 8, serializers.py)
occurs when running a SAST tool on version 0.9.9 of
Django Tastypie, shown in Figure 1. The set of alerts
produced by running the same SAST tool on version 0.9.10
of Django Tastypie does not include alert a.

Definition 4 (Resolved Alerts Ā). Let P be a software
project, and P ′ be the subsequent version of P . Let A
and A′ be the sets of alerts generated by running a SAST
tool on P and P ′, respectively. The set of resolved alerts
Ā = {a|a ∈ A ∧ a ̸∈ A′}.

Conceptually, a resolved alert a ∈ Ā suggests the
existence of a vulnerability fix. However, as we discuss in
the next section, there are several reasons why resolved
alerts may not be a vulnerability fix.

3. Overview

This paper introduces new techniques to identify vulner-
ability fixes and then determines if they were announced. In
this section, we provide an overview of the approach before
discussing details in subsequent sections. Our techniques
must address the following issues:

• Identifying vulnerabilities is inherently difficult. All
SAST tools face fundamental limits in detecting
vulnerabilities without runtime context, and there are
classes of vulnerabilities some or all tools cannot
detect. SAST tools can also produce an overwhelming
number of false positives [25], [8].

• Code refactoring complicates identifying and localiz-
ing vulnerability fixes. Software changes disturb line
numbering, which SAST tools use to localize and
distinguish specific vulnerabilities. Changes can also
reorganize logic at the subroutine, class, or file level,
which moves the vulnerability and changes an alert
between versions. Figure 3 demonstrates alert type, τ ,
resolving in the third method m3 of file one F1 in P ′.

Alert localization ability disappears when using coarse
granularity levels for alert analysis (e.g., project).

• There is no single standard location or format for
fix announcements. Developers are free to announce
fixes in any place they choose in unstructured natural
language. The most common locations are changelogs,
news posts, and through CVEs.

Our broad approach to addressing the first two chal-
lenges is to use Differential Alert Analysis (DAA) with
SAST tools. Conceptually, DAA operates by determining
the set of resolved alerts Ā from Definition 4. Our work
has two key observations. First, DAA eliminates many
of the false positives common to static analysis because
developers tend not to fix false positives, so alerts remain
in later versions. However, as we gained experience with
this approach, we discovered that DAA can still have false
positives when the code causing a SAST false positive is
refactored or deleted. When DAA sees the false positive
alerts disappear, it incorrectly assumes the initial positive
was correct and marks the removal as a fix. Fortunately,
prior work suggests that vulnerability fix commits rarely
change the underlying semantics of the program and
often change a few lines [35]. To handle code refactoring
instances, counting SAST alerts at several levels (i.e.,
project, file, function, and line level) of the project can
eliminate false positives. While the lower granularity levels
(e.g., function or line) enable resolved alert localization.
Figure 3 shows the overall flow of our approach.
Step 1 — Generating Alerts: DAA leverages a SAST
tool to generate initial security-related alerts on projects.
DAA tracks four levels of granularity for alerts: (1) project,
(2) file, (3) function, and (4) line level. Tools commonly
emit alerts at the fine-grained level of the line number (i.e.,
line level). To increase the granularity of the alert location
to its function, we use an AST of the file to extract the
coarse-grained code elements (e.g., classes and functions).
The SAST alerts are then tagged with the coarse-grained
code elements for the associated version of the project.
Once alerts have been generated, we can then start to
identify differences.
Step 2 — Identifying Alert Differences: We rely on
DAA to identify resolved alerts. The high-level concept
is to extract alerts present in P and not in P ′. The four
levels of analysis allow for alert localization of resolved
alerts while still maintaining high precision. Alert counts
are taken at each level to determine when alerts are in P
and not P ′. The project level analysis drives the overall
recall of DAA, but without file, function, and line level
information, the approach loses the ability to identify the
exact resolved vulnerability.
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Step 3 — Identifying Silent Fixes: An automated process
is then used to determine the announcement level of the
resolved alert. In prior work, determining the announce-
ment level relied on a fully manual process [61], [66].
Automating the announcement level process is a multi-
step which requires extracting commit metadata, locating
the changelog (e.g., notes identifying version changes or
making use of the release/tags tab within GitHub), parsing
the changelog, and checking the text of the changelog
for security related terms. Additionally, advisories exist in
security advisory databases (e.g., OSV or GHSA), which
we automatically search. Automating the announcement
level is critical for scaling DAA to determine if resolved
alerts are announced.

4. DAA for Vulnerability Fixes

Identifying vulnerability fixes is a prerequisite to iden-
tifying silent fixes. Our Differential Alert Analysis (DAA)
methodology identifies vulnerability fixes by running a
SAST tool on a software project P and its subsequent
version P ′. Conceptually, the set of resolved alerts Ā
suggests the existence of vulnerability fixes. This section
describes how our DAA algorithm works. It then provides
a theoretical intuition on DAA accuracy in practice.

4.1. DAA Algorithm

DAA takes as input a SAST tool and two subsequent
versions of a software project P and P ′. It runs the SAST
tool on each commit to collect corresponding alerts. Next,
it uses static program analysis to extract additional program
context for each alert (e.g., class and function name). This
additional function name is needed when performing fine-
grained alert localization. DAA then combines the four
levels of analysis to produce the set of resolved alerts
Ā. We note that this section describes the process from
the perspective of only two commits of a program. In
Section 6, the algorithm expands to inspect hundreds of
commits for a single program.

4.1.1. Differential Alert Analysis. The high-level logic
for DAA is in Algorithm 1. P ′ is the child commit of
P . Using a time-based approach on commits is incorrect
due to merges and thus requires a parent-child relationship
to capture the linear progression of code changes. We
consider the alert type, τ , unique to the desired SAST tool
and do not change the context for the tool between runs.
Finally, DAA considers resolved alerts at various levels to
handle code refactoring and alert localization: project, file,
function, and line levels.

The DAA algorithm begins by running the SAST tool
on both P and P ′, producing corresponding sets of alerts
A and A′. Conceptually, to determine if an alert a in A
is not in A′, we need a way to correlate alerts in A to
alerts in A′. However, the alert information provided by
most SAST tools (Definition 3) only provides the filename
and line location. DAA must also extract the function
name for the code triggering the alert. Specifically, it
uses FindCodeContext(·) (Algorithm 2) to identify the
function, method, class, or file scope most appropriate for
considering each alert in A and A′, adding this context

Algorithm 1: DAA to produce Ā from P to P ′

Input: P ; P ′;
Output: Resolved alerts Ā

1 DAA(P , P ′):
2 Ā, A, A′ = ∅, SAST (P ), SAST (P ′)
3 foreach a ∈ A do
4 a.function = FindCodeContext(a, P )
5 end foreach
6 foreach a′ ∈ A′ do
7 a′.function =

FindCodeContext(a′, P ′)
8 end foreach
9 foreach a ∈ A do

10 τ = a.τ
11 if count(τ,A) > count(τ,A′)

∧ count(τ,A.file) > count(τ,A′.file)
∧ count(τ,A.function) >
count(τ,A′.function)
∧ count(τ,A.line) > count(τ,A′.line)
then

12 Ā.append(a)
13 end if
14 end foreach
15 return Ā

to the alert data structure. For more detail, we describe
FindCodeContext(·) in Section 4.1.2.

In the final phase, the DAA algorithm determines if the
disappearance of the alert results from a vulnerability fix or
a code refactor. Recall from Definition 4 that Ā = {a|a ∈
A∧a ̸∈ A′}. This definition makes sense if alerts in A can
be matched directly to alerts in A′. In Figure 3, an alert
resolved from P to P ′. The alert, τ , is resolved in the third
method m3 of the first file F1. Considering the project
alerts at the coarsest level (i.e., project) will lose the ability
to identify which alert resolved. To address this, DAA takes
the intersection of four levels of analysis from the set of
alerts: project, file, function, and line. The groupings count
how many specific vulnerability types are within each
level. For example, if A has n amount of a.τ and A′ has
n− 1 amount of a.τ , then a vulnerability must have been
resolved. DAA then uses the finer-grain levels (i.e., file,
function, and line) to maintain alert localization capabilities.
Conceptually, granularity-based matching improves the
overall precision of DAA while maintaining the ability to
localize the resolved alert down to the line level.

DAA cannot account for the case when one vulnera-
bility resolves, but the same type of vulnerability is re-
introduced somewhere else. For example, the vulnerable
code for alert a was in function foo in P and resolved,
but function bar in P ′ introduces the same type of
vulnerability. Our DAA algorithm will not include a in Ā,
resulting in a false negative. While we do not anticipate
this to be a common scenario in practice, as few lines
typically change during a patch [35], it is nevertheless a
possibility. We dive deeper into the state space of such
scenarios in Section 4.2.

4.1.2. Function Identification. As discussed in Sec-
tion 4.1.1, SAST tools commonly only output the file
and line numbers of the code related to each alert. Since
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Algorithm 2: Extract code context names (e.g.,
function F , class C, method M ) from a project
P for a given alert a.

Input: Alert a; Project P ;
Output: Alert code context context

1 FindCodeContext(a, P):
2 name = a.file
3 F = ∅; C = ∅; M = ∅
4 foreach node ∈ ParseAST (P, a.file) do
5 if node.type = function then
6 F.append(node)
7 else if node.type = class then
8 C.append(node)
9 foreach child ∈ node.children do

10 M.append(child)
11 end foreach
12 end if
13 end foreach
14 foreach e ∈ F ∪M ∪ C do
15 if e.line start ≤ a.line ≤ e.line end

then
16 name = e.name
17 break
18 end if
19 end foreach
20 return name

line numbers can easily change, DAA needs to extract
appropriate code context for the line producing the alert.
Ideally, this context is the name of a function or method
within a class. However, not all alerts triggered are within
functions, classes, or methods. In such cases, the file is
the location of the alert. We note that as long as this name
is determined consistently for both P and P ′, DAA only
needs to retain a string for the name.

Algorithm 2 shows how FindCodeContext(·) pro-
duces a context name from an alert a and project P .
Since the SAST identifies the filename, the algorithm
only needs to consider that file from the project. The
first step is to extract the file’s abstract syntax tree
(AST). FindCodeContext(·) then iterates through all
nodes, identifying functions, classes, and member functions.
The second step compares the line number of the alert
with the line number of each identified node. Note that
the union of F ∪ M ∪ C retains the order such that
FindCodeContext(·) prioritizes functions over methods
over classes over files. The loop breaks when a match
occurs, and the resolved name is returned. The filename is
returned by default if no line number match is identified.

4.2. DAA Intuition

Previously we discussed the design of DAA; now,
we discuss the intuition of how DAA works. Consider
the underlying SAST tool’s outputs on a single project
P . SAST tools either emit alerts (positive) or do not
emit alerts (negative). True positives (TP) are alerts of
true vulnerabilities. False positives (FP) are alerts on non-
vulnerable code. False negatives (FN) are vulnerabilities
that the SAST tool misses; thus, it does not emit any
alerts. True negatives (TN) are correct rejections to alert

on non-vulnerable code. Precision is the proportion of
true positives. That is, precision = TP

TP+FP . Recall
is the proportion of vulnerabilities detected. That is,
recall = TP

TP+FN .
DAA has outputs of type positive (true positive and

false positive) and type negative (true negative and false
negative) alerts. For DAA to produce an alert, a SAST
alert transition of type positive to type negative must occur
between P to P ′. For example, a TPP is patched in P and
becomes a TNP′ in P ′, representing a DAATP. We refer to
these as alert transitions.

Figure 4 demonstrates the alert transitions to generate
a DAATP and a DAAFP. DAATP was previously discussed; it
is the alert transition of TPP to TNP′ (solid arrow 4 in
Figure 4). This alert transition represents a true resolved
vulnerability. A DAAFP can be obtained through three alert
transitions. The first is a TPP to FNP′ (dotted arrow 2 in
Figure 4). This alert transition is a resolved vulnerability
and only appears to be fixed. An example would be a
code refactor that altered the vulnerability from P to P ′

so that it is still present but not detected. The second
DAAFP, is an alert transition from FPP to FNP′ (dotted arrow
6 in Figure 4). These alert transitions represent a new
vulnerability in P ′, but one the underlying SAST would
miss, appearing as a resolved vulnerability. The final DAAFP,
is an alert transition from FPP to TNP′ (dotted arrow 8 in
Figure 4). By construction, this alert transition is true —
an FP is not a vulnerability — but through some alteration
of the project, the developer removed the alert in P ′.

Paths to generate recall of DAA can be seen in Figure 5
based on the underlying SASTrecall and paths to determine
a DAATP and a DAAFN. We previously discussed the DAATP
and now will discuss the intuition of a DAAFN. A DAAFN
consists of three paths. The first, a TPP to FPP′ (dotted
arrow 3 in Figure 5). This alert transition represents a
resolved vulnerability, but the alert still appears in the P ′.
The second, a FNP to FPP′ (dotted arrow 7 in Figure 5).
This alert transition represents a resolved vulnerability not
initially detected by the underlying SAST tool but now
emits an alert in P ′. The third, FNP to TNP′ (dotted arrow
8 in Figure 5). This alert transition represents a resolved
vulnerability the underlying SAST tool missed and would
not emit an alert in P ′. We consider the SASTrecall the
probability out of all vulnerabilities within P to be how
many are of condition true positive or false negative.

DAA alert transition types are complex, but the proba-
bilities of those transitions are crucial to how well DAA per-
forms. Because a DAAFP will be relatively rare (especially
compared to the SAST FP rate), the DAAprecision ratio
approaches 1. This provides an intuition for the findings
in Table 2 that DAA can have high precision even with
low precision tools. We show these probabilities within
our evaluation in the next section and that it is unlikely
developers resolve SAST false positives. We also note that
the underlying SAST tool will determine the maximum
number of resolved vulnerabilities DAA can detect. If the
SAST tool can not initially detect the vulnerability in P ,
DAA will not detect if the vulnerability resolves in P ′.

4.3. Announcement Level Identification

DAA is responsible for determining if alerts from
SAST tools resolve, but it does not determine if devel-
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Figure 4: Generating true positives and false positives in
DAA in terms of SAST precision. Solid bold lines indicate
a path to a TP, while dotted lines show paths to an FP.

opers announced the fix. To scale the search for silent
fixes, we automate a process to determine resolved alert
announcement levels. The general concept is that a security
announcement should be clearly stated as a security-related
fix and be in an accessible location, such as a changelog
within a repository. Changelogs come in various formats
(e.g., changelog.txt, news.rst, history.md); in some cases,
developers use the release tab of GitHub to communicate
changes. In addition, CVEs can bring awareness of security
fixes. In this subsection, we discuss the methodology of
obtaining changelogs from GitHub repositories and how
to determine if a security announcement took place, and
if there are any CVEs for the fix.
Announcement Level Method: The initial step is to obtain
commit metadata. Extracting commit metadata involves
acquiring the commit title, commit message, commit date,
and the associated commit version tag. We obtain the
commit message and tags through the GitHub API [18].
GitHub tags point to a time along the commit history tree
and indicate a commit associated with a particular version.
For the scope of this paper, we are only concerned with
tags and commits on the main branch.

To obtain the changelog, we rely on the project
changelogs released by PyUp.io [49]. The PyUp project
searches a GitHub repository for standard changelog nam-
ing conventions (e.g., changelog.txt, news.rst, history.md)
to identify the associated changelog. In addition, we obtain
the release tab of GitHub as some developers will announce
changes in such locations. Built into the changelogs
project is a parsing feature, which will parse a changelog
into separate blocks based on the version within the text.

With the parsed changelog and commit metadata, we
then match the block of changelog to the associated commit
version tag. Within the associated block, we run git-vuln-
finder [10], which finds security-related messages within
text based on regexes [4], [67]. We believe it is unlikely
that developers would not use security-related terms when
disclosing a vulnerability fix.

Any matches in the changelog imply an announced fix,
while no matches in the changelog text imply a silent fix.
We discuss the results of this automated announcement
analysis within Section 6.3.
Matching CVEs to Resolved Alerts: To match CVE data,

TPP' FNP' FPP' TNP'

Recall 1-Recall

1 2 3
4 5

6 7 8

SAST
Tool

TPP FNP

DAARe =
DAATP

DAATP + DAAFN

DAATP Path

Pr(TNP' | TPP)4

DAAFN Path

Pr(FPP' | TPP)3
Pr(FPP' | FNP)7
Pr(TNP' | FNP)8

Figure 5: The dotted lines show paths to generate false
negatives in DAA in terms of SAST recall. Generating
true positives is the same as in Figure 4.

we rely on Open Source Insights (OSI) [20]. This Google-
based platform gathers known security advisories from the
GitHub Security Advisories Database (GHSA) [17] and
the Open Source Vulnerability Database (OSVDB) [21]
to match advisories to projects. Both GHSA and OSVDB
include official CVEs from the national vulnerability
database [43]. OSI then handles the process of matching
advisories related to the correct project and version. In
addition, the advisories contain reference links. These
reference links, for example, point to the GitHub commit
patch links that fixed the security issue.

We first download the OSI advisory table from the
Google BigQuery snapshot [19] to match the resolved
alerts to OSI. The dataset contains a title and description
of the vulnerability, reference links, project name, affected
versions, and the disclosure date. The project name and
reference links are key matching points for our pipeline.
We first match the resolved alerts on the project name to
determine if any matches exist for a given project. If so,
we search for the associated commit with a resolved alert
in the reference links. Matches on the project name and
commit patch reference links are then marked as announced
with a known CVE. We discuss the evaluation results of
the matching process in Section 6.3.

5. Evaluation

This section describes how we collected a ground truth
dataset and selected the necessary underlying tools to
perform DAA. We then evaluate the underlying SAST tool
against the vulnerable projects in the ground truth dataset.
Finally, we evaluate DAA over the dataset in which the
SAST tools produce true positives. While DAA will work
on any language the underlying tools support, we evaluate
DAA for Python and Java due to their popularity.

5.1. Evaluation Setup

We first require a labeled dataset of software with
resolved vulnerabilities for both Python and Java. Various
databases exist that identify resolved vulnerabilities in
Python and Java but lack the exact location of the vulner-
ability. To identify the location of the vulnerability, we
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use information from within the report of the associated
CVE, which is cataloged by the National Vulnerability
Database (NVD) [43]. In more recent years, the report
of a CVE contains a patch link (e.g., a GitHub commit
fixing the vulnerability). We obtained changed lines from
the GitHub diff of the commit for assistance in identifying
the vulnerability location.
Python Ground Truth Dataset: We used the SafetyDB
database [48] to identify CVEs associated with vulnerabil-
ity patch links to PyPI projects for the ground truth dataset.
SafetyDB database contains disclosed vulnerabilities in
Python projects hosted on PyPI, the Python Package
Index used by virtually all Python developers. SafetyDB
comes from a team at pyup.io that filters CVEs and
changelogs looking for vulnerabilities related to PyPI
projects. The database continued to receive updates as
of our data collection in November 2021. The data in
SafetyDB contains the PyPI project name, advisory, CVE-
ID (where available), and the vulnerable versions. We
only target resolved vulnerabilities with associated CVEs
containing patch links to a GitHub repository. We obtained
174 CVEs accounting for 94 unique PyPI projects.

While we believe our approach is reasonable and
appropriate, it does have some limitations. We assume the
correctness of SafetyDB and that the patch link reported in
the CVE is correct. We also must assume the vulnerability
is resolved in the version immediately after the last listed
vulnerable version in the SafetyDB tag. If this assumption
were false, it would imply an error in the database entry.
Finally, when a SafetyDB entry did not contain a pointer
to a CVE with a link to the relevant patch, we excluded
the vulnerability from analysis simply because we could
not be confident about where the fix should be.
Java Ground Truth Dataset: We rely on a pre-built
database by Ponta et al. [46] that identifies fixes to open-
source Java projects containing 624 security fixes. The
data was manually built over four years and open-sourced
in 2019. The database contains 1,282 commits for security
fixes pointing to the project repository, CVE, and commit-
patch link for 205 open-source Java projects used within
SAP products. As noted in the opening of Section 5.1, we
still need to extract git diff information of the commit-
patch link to obtain changed lines for identifying the
potential vulnerability location. Discussion on validating
vulnerability location occurs in Section 5.2.
SAST Tool Selection: As discussed in Section 4, DAA
relies on an underlying SAST tool. We have selected two
tools for evaluation purposes for Python: Bandit [47] and
CodeQL [16]. We evaluate our DAA approach for Java
using CodeQL and SpotBugs [54]. Bandit, CodeQL, and
Spotbugs are oriented toward detecting security-related
flaws in software and are actively maintained. CodeQL,
used in Section 6 for our ecosystem analysis, is adopted by
GitHub as the primary tool for scanning project code [15].

Bandit is explicitly designed to find security flaws in
Python, is lightweight, and is actively maintained. Bandit
analyzes the AST for each file in a project and produces
alerts at a line-level granularity. CodeQL is a versatile tool
that can run checks for several languages. CodeQL uses
data-flow analysis to find flaws in code. CodeQL creates a
queryable database extracted from code and uses an object-
oriented query language (.QL) to allow end-users to search
for known bug patterns. CodeQL relies on the build process

for Java to extract syntactic and semantic data. For Python,
CodeQL extracts information directly from the source code.
SpotBugs is a static analysis tool designed specifically
for Java applications. SpotBugs checks for over 400 bug
patterns and has some specifically related to security. Like
CodeQL, SpotBugs needs to compile Java-based projects
to scan the bytecode. More detailed information regarding
each tool is in their respective documentation.

Adapting DAA to SAST tools is straightforward. Gen-
erally, SAST tools export alerts with line level and file
name granularity. DAA only needs to extract the function
name (Algorithm 2). DAA can then be applied with alerts
at the project, file, function, and line levels. We excluded
commercial tools in our study due to not having licenses for
them. In the following section, we discuss the evaluation
process of these tools on ground truth data.

5.2. SAST Evaluation

SAST Tool Evaluation Method: The goal of evaluating
the underlying SAST tool is to determine the initial
precision and recall values to validate the DAA theory
previously described in Section 4. To do so, we must
identify the true and false positives that each tool produces.
We also use the true positives as the primary evaluation
set for DAA, as discussed in Section 5.3.

We began by running the selected SAST tools across
all parent commits of the commit-patch link in the ground
truth dataset. The parent commit, in theory, should be
the source code before the patch and still contain the
vulnerability concerning the CVE. Bandit and SpotBugs are
run using default settings. For CodeQL, we used two query
packs (python-security-and-quality and python-security-
extended) to search for security related flaws in Python.
For Java, we used the java-security-and-quality and java-
security-extended query packs. When running CodeQL, we
confirmed current scans overwrote any existing databases
from a previous scan of the target projects.

For easy build management of the Java ground truth
database, we constructed a Jenkins pipeline integrating
CodeQL and SpotBugs to scan the associated projects. For
simplicity, we only targeted Maven-based projects and used
the Maven 3.5.4 JDK-8 docker images in Jenkins for the
build environments. We have a four-stage build process for
the Jenkins CI/CD. The first stage is the build stage which
invokes CodeQL to create a database using Maven. We
skipped test cases and used a clean install for each target
project when compiling with Maven. The second stage
analyzes the compiled CodeQL database with the desired
query packs. In the third stage, we run SpotBugs using
Jenkins’s built-in plugins. The final stage was copying
alert records (i.e., CodeQL and SpotBugs reports) outside
the Docker environment for future analysis. Due to the
simplicity of scanning Python projects, we opted for a
custom-built script to run Bandit and CodeQL.

Once alerts return for the associated target project,
we distinguish false positives from true positives. We
automatically identified the set of potential true positive
alerts by comparing the alert location to the locations of the
changed code from the commit patch. To establish ground
truth, we manually validate each tagged alert and determine
if the alert was directly related to the vulnerability. If the
alert matched the root cause of the vulnerability from the
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TABLE 1: Evaluation of SAST tools on ground truth
datasets. Precision is calculated with alert TP, and Recall
is calculated with CVE TP.

Tool GT
CVE

TP
CVE

TP
Alert

FP
Alert

Precision
Alert

Recall
CVE

Python-Bandit 174 25 64 35,871 0.18% 14.37%
Python-CodeQL 174 14 28 18,028 0.16% 8.05%
Java-SpotBugs 130 13 41 181,739 0.01% 10.00%
Java-CodeQL 130 15 25 10,494 0.24% 11.54%

commit patch link, we could be confident the alert is a true
positive. Otherwise, if an alert is not within the location of
the changed code from the commit patch link, we know it
is unrelated to the vulnerability. We conservatively assume
all of those alerts to be false positives; if they are indeed
vulnerable, it would merely improve the reported precision
of the tool. The count of false negatives is the difference
between the number of known vulnerabilities within the
project and the number of true positives identified. We
retain these metrics at the vulnerability type level to help
us gain insight into the relationship between SAST metrics
and DAA in Section 5.3.

5.2.1. SAST Tool Results. SAST tools are well-known to
produce false positives [25], [52], [8]. Understanding the
type of false positives produced by the underlying SAST
tools is outside the scope of this paper. We report results
of each SAST tool across the entire project rather than
the commit’s diff. The deciding factor was to show that
despite the number of false positives produced by a tool,
DAA can still perform with high precision.
Python SAST Tool Evaluation Results: The two Python
SAST tools correctly identified 39 CVEs compared to
Python’s 174 CVE ground-truth dataset. For Python, we
scan all 94 projects for the 174 CVEs. Between Bandit
and CodeQL, an overlap of 6 CVEs occurred. Table 1
provides a breakdown of the SAST evaluation. Precision
was calculated based on alerts and recall at the CVE level.
Recall at the CVE level is appropriate since we are only
aware of the vulnerabilities described in the projects.

Bandit had a precision of 0.18% and recall of 14.37%
against the vulnerable projects in the ground truth dataset.
Bandit produced 35,935 alerts across the vulnerable parent
commit of projects in the ground truth dataset. We con-
cluded 64 of those alerts to be true positives, resulting in
35,871 false positives and 149 false negatives concerning
the CVE count. The most common detection true positive
type for Bandit is related to improper neutralization of spe-
cial elements in output used by downstream components,
also known as injections. Precisely, cross-site scripting
(CWE-79) vulnerabilities with five CVEs were the most
common and followed by operating system command
injections (CWE-78) with three associated CVEs. The
three most common missed vulnerabilities were type cross-
site scripting (CWE-79), open redirects (CWE-601), and
improper input validation (CWE-20).

CodeQL for Python had a precision of 0.16% and recall
of 8.05% against the vulnerable projects in the ground
truth dataset. We concluded 28 of those alerts to be true
positives, resulting in 18,028 false positives and 160 false
negatives to the CVE count. The most common detection
true positive type for CodeQL is related to open redirects

(CWE-601) associated with four CVEs. The next most
common vulnerability type was of type cross-site scripting
(CWE-79), assigned to three CVEs. Similar to Bandit,
the most missed vulnerability was for cross-site scripting
(CWE-79), followed by improper input validation (CWE-
20), and then open redirects (CWE-601).
Java SAST Tool Evaluation Results: For Java, issues
arose when compiling the projects. We could only compile
46.94% of the projects accounting for 130 CVEs, which
align with previous work when compiling Java applica-
tions [60], [22]. The Ponta et al. database was released in
2019 and contained CVEs in 2007. The older projects lead
to a natural removal of dependencies from their respective
repository, making compilation impossible.

SpotBugs for Java had a precision of 0.01% and recall
of 10.00% against the vulnerable projects in the ground
truth dataset. We concluded 41 of those alerts to be true
positives, resulting in 181,739 false positives and 117 false
negatives with the CVE count. The greater number of alerts
in SpotBugs can be explained by having more security
checks integrated within the tool. The most common
detection true positive type for SpotBugs is improper
input validation (CWE-20) associated with three CVEs and
permissions, privileges, and access control vulnerabilities
(CWE-264) assigned to two CVEs. The three most missed
vulnerability types for SpotBugs were improper input
validation (CWE-20), deserialization of untrusted data
(CWE-502), and cross-site request forgeries (CWE-352).

CodeQL for Java had a precision of 0.24% and recall of
11.54% against the ground truth dataset. We concluded 25
of those alerts to be true positives, resulting in 10,494 false
positives and 115 false negatives with the CVE count. The
most common detection true positive type for CodeQL is
path traversal vulnerabilities (CWE-22) associated with six
CVEs. The next most common vulnerability type was of
type improper input validation (CWE-20), assigned to five
CVEs. The most missed vulnerability was for improper
input validation (CWE-20), deserialization of untrusted
data (CWE-502), and then cross-site scripting (CWE-79).
With the underlying performance of the SAST tools, we
can now evaluate DAA.

5.3. DAA Evaluation

We evaluate DAA against a ground truth dataset to
demonstrate the following research questions:
RQ1: Does DAA work better than simple line-level ap-

proaches for identifying resolved vulnerabilities
(e.g., LGTM)?

RQ2: How does DAA performance relate to the underly-
ing SAST tool performance?

5.3.1. DAA Evaluation Method. To evaluate DAA, we
run the ground truth vulnerable parent commits and
patched commits through our DAA technique described
in Section 4.1. The entire process was automated using
a Jenkins pipeline to run the SAST tools and a Python
implementation of Algorithm 1 and 2 for DAA.

The output of DAA will emit true positives or false
positives. True positives in terms of DAA are the resolved
vulnerabilities. False positives are alerts emitted by DAA
not corresponding to true resolved vulnerabilities. False
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TABLE 2: Evaluation results of industry standard (line-level) for identifying resolved alerts vs. DAA for identifying
resolved alerts on ground truth data based on 67 CVEs. Precision and recall values are based on the labeled alert counts
from the underlying SAST evaluation in Section 5.2.

Language Tool Ground Truth Industry Standard (Line-Level) DAA
CVE Total Alert Total TP FP FN Precision Recall TP FP FN Precision Recall

Python Bandit 25 64 57 152 7 27.27% 89.06% 43 0 21 100.0% 67.19%
Python CodeQL 14 28 19 147 9 11.45% 67.86% 14 0 14 100.0% 50.00%
Java SpotBugs 13 41 39 99 2 28.26% 95.12% 35 2 6 94.59% 85.37%
Java CodeQL 15 25 17 1 8 94.44% 68.00% 10 0 15 100.0% 40.00%

Totals 67 158 132 399 26 24.86% 83.54% 102 2 56 98.08% 64.56%

negatives are when DAA misses resolved vulnerabilities.
The number of resolved vulnerabilities DAA detects is
driven by the number of true positives the underlying
SAST tool initially detects. Due to this fact, we only run
DAA on the projects for which the underlying SAST tool
produced a true positive in Section 5.2. When considering
these projects, we still account for all possible checks
from the underlying SAST tool emitted during the scan.
Doing so results in thousands of alerts from the SAST
tool that DAA has to analyze. The DAA evaluation ground
truth dataset consists of 67 CVEs from real Python and
Java-based open-source projects.

We also compare the industry standard (line-level)
technique for identifying resolved vulnerabilities [34]. The
line-based analysis is a naive differential alert analysis that
only considers the type of vulnerability and line-level of
alerts. The line-based approach is prone to false positives
triggered by code refactors. For example, minor refactors,
such as moving functions within the file, can trigger fixes
using the line-based approach.

5.3.2. DAA Evaluation Results (RQ1). DAA resulted in
an average precision of 98.08% and an average recall of
64.56% across the four separate evaluations based on alerts
in Table 2. When comparing DAA to the industry standard
line-level approach, our approach increases precision by
294.53% while only having a 22.72% decrease in recall.
Note we only ran DAA and the industry-level approach
evaluation against entire projects where the SAST tool
could detect a TP. Therefore, the related recall is a
calculation of the TP alert counts from Section 5.2. As
predicted, DAA performed with high precision despite our
test set’s dismal (though typical for SAST) precision of
Bandit, CodeQL, and SpotBugs. As Section 4 mentions,
DAA only emits alerts when a positive alert was in P and
transitions to a negative alert in P ′. The critical property
that allowed DAA to perform with high precision is that
the probability of an FP in P resolving to an alert of
type negative in P ′ was nearly negligible as only two FPs
transitioned in our ground truth dataset. The reason false
positives do not resolve from P to P ′ is apparent: they
are not vulnerabilities, so developers do not fix them.

DAA detected true positives for various vulnerability
types. For Python with Bandit, DAA identified 43 TP
alerts. The most common type of TP was for the improper
control of a resource through its lifetime, which had
five associated CVEs. For Python with CodeQL, DAA
found 14 TP alerts. The most common alert types were a
combination of improper control of a resource through its
lifetime (three CVEs) and improper neutralization (three
CVEs). DAA also detected two other CVEs related to

improper access controls. For Java with CodeQL, DAA
discovered 10 TP alerts. DAA identified three CVEs related
to improper control of a resource through its lifetime
and three of improper neutralization. Regarding SpotBugs,
DAA detected 35 TP alerts and observed the widest
variety of CWE true positives. These TPs included alerts
related to improper neutralization, access control, credential
management errors, cryptographic issues, and improper
control of a resource throughout its lifetime.

For recall, DAA will only detect a fix if the underlying
SAST tool detects the initial vulnerability, the primary
limitation of DAA. The overarching theme among missed
vulnerabilities for DAA is the CWE class of improper
neutralization of special elements in output used by down-
stream components (CWE-74). For example, vulnerabilities
missed by DAA added sanitization of input before the
downstream function or component call. The primary
limitation of such instances is the SAST tool’s inability to
verify a sanitized data flow and issue a true negative for the
fixed version. The higher recall for the line-level approach
can be misleading due to the underlying weaknesses of the
SAST tool. Even though the alerts missed by DAA remain
in the P ′, they only shifted a few lines during the patch,
triggering a positive alert for the line-based approach. We
found that DAA outperforms the industry standard line-
level approach. In the next section, we dive deeper into the
underlying relationship between SAST metrics and DAA.

Takeaway: DAA finds resolved vulnerabilities in
a ground-truth dataset, outperforming the industry
standard line-level method with an increase of
294.53% in precision and only a 22.72% reduction
in recall.

5.3.3. DAA Underlying SAST Relationship (RQ2). To
gain insight into the relationship between the performance
of DAA and SAST tools, we evaluated the results at
a granular level of vulnerability type. As detailed in
Section 5.2, we established the performance of each
SAST tool at the level of individual vulnerability types,
specifically their checks. We calculated the underlying
SAST precision/recall for each tool’s check and vice-versa
for DAA. The analysis provides valuable insights into how
DAA operates with SAST performance, enabling us to
understand the dynamics between the two better.

Specifically, we conducted a multilinear regression
to analyze the relationship between SAST precision and
recall (independent variables) and DAA precision and recall
(dependent variables). We perform separate regression
analyses for DAA precision and recall. We consider all
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TABLE 3: Multilinear regression analysis between the
underlying SAST metrics and DAA metrics. SAST recall
is a significant predictor for DAA recall, while the other
SAST metrics have little impact on DAA precision.

Independent
Variables

Dependent
Variable Coefficient p > |t|

SAST Recall DAA Recall 0.59 0.004
SAST Precision -0.16 0.68

SAST Recall DAA Precision -0.09 0.11
SAST Precision 0.03 0.75

false and true positive alert types from DAA for the
regression analysis for DAA precision. If DAA triggered
an alert, we would consider the other alerts of the same
type from the SAST tool. As shown in Table 2, our ground
truth analysis consisted of 158 true positive alerts from the
underlying SAST tools. Considering the same checks that
generated true positives, we have 36,508 false positives
alerts from the underlying SAST tools. We use these
positive alerts to perform the regression analysis regarding
DAA precision. For DAA recall, we consider all of the
positive alerts along with the false negatives that were
missing by DAA. Table 3 presents the regression results
for the dependent variable of DAA precision and recall to
the underlying SAST metrics. Next, we discuss the SAST
relationship with DAA recall and precision.

The regression analysis shows a strong correlation
between SAST recall and DAA recall. The coefficient for
SAST recall is 0.59, indicating that a one-unit increase
in SAST precision corresponds to a 0.59 unit increase in
DAA recall. The p-value of 0.004 indicates a statistically
significant relationship. However, the coefficient for SAST
precision is -0.16, indicating an inverse relationship with
DAA recall. The p-value of 0.68 for SAST precision
shows no statistically significant relationship to DAA recall.
For example, Bandit’s recall for the check permissions,
privileges, and access control vulnerabilities (CWE-264)
was 80%, while the check for cross-site scripting (CWE-79)
was 32%. Additionally, both checks had a precision under
1%. DAA achieved 100% recall for CWE-264 and 40%
for CWE-79, demonstrating a higher SAST recall results
in a higher DAA recall. Overall, SAST recall significantly
impacts DAA recall, while SAST precision has little effect.

Furthermore, the regression analysis revealed that the
underlying metrics of the SAST tool have minimal impact
on DAA precision. The lower coefficient values of SAST
recall (-0.09) and SAST precision (0.03) suggest any
increase or decrease in SAST metrics has a negligible
effect on DAA precision. For example, CodeQL’s precision
for the check related to a path traversal vulnerability (CWE-
22) was 13.6% and a recall of 66.7%. The check XML
external entity references (CWE-611) had a precision of
0.47 and a recall of 15%. These underlying checks for
DAA produced a precision of 100%, demonstrating that
neither the precision nor recall impacted DAA precision. As
previously mentioned, the high precision of DAA is driven
primarily by developers not fixing false positives simply
because they are not actual vulnerabilities. Therefore, one
should focus on SAST recall to obtain optimal DAA results.

Takeaway: Despite low-precision SAST tools,
DAA produces high-precision results. Furthermore,
increasing SAST tool recall will increase DAA recall.

6. Ecosystem Study

We now seek to apply DAA at an ecosystem scale.
Because DAA relies on SAST alerts, we can leverage
an existing alert database made available by LGTM, a
code review platform 2. The LGTM platform scans an
entire project’s GitHub commit history with CodeQL and
provides alerts for each commit. We focus on projects
from NPM, PyPI, Maven, and Go ecosystems, as these
are the intersection of scanned languages on LGTM and
the available data from Open Source Insights [20]. The
Open Source Insights (OSI) platform is a project hosted
by Google to catalog dependency information (e.g., full
dependency graphs, advisories) from various ecosystems.
We break our dataset into two parts: a breadth and depth
collection. The breadth study consists of running DAA on
the latest ten commits for all available projects scanned on
LGTM from the NPM, PyPI, Maven, and Go ecosystems.
The depth study targets the latest 1,000 commits on the
top 1,000 most depended upon projects from NPM, PyPI,
Maven, and Go that have been scanned by LGTM. We
start our discussion by describing the data collection and
analysis methods, then provide results and case studies
from the DAA analysis across projects in LGTM. We
seek to demonstrate that DAA finds vulnerability fixes
regardless of their disclosure to the public.

6.1. LGTM Methods

Data Collection: The initial step is to obtain projects
from NPM, PyPI, Maven, and Go. We used a Google
BigQuery Data snapshot released by OSI to obtain the
available projects quickly [19]. The data contains project
version information, dependency graphs for each project,
and associated security advisories. The data is available
to query and download.

From a March 3, 2022 scrape of LGTM using their
APIs, the platform contained 104,121 projects from NPM,
PyPI, Maven, and Go. Most of the projects came from
NPM, with 62,551 scanned projects on LGTM, followed
by Go (18,649), PyPI (16,143), and then Maven (6,778).
We use these projects as the basis for a breadth and depth
analysis. We scraped at a rate of 5,000 API calls per hour
to avoid significant stress on the LGTM servers.
Breadth Data Collection: For the breadth analysis, we
restrict the data collection process to the latest ten commits
on the intersection of LGTM scanned projects and OSI data.
We used GitHub APIs to obtain commit information on the
latest ten commits for each project before March 5, 2022.
While not all projects had ten commits, we confirmed at
least two commits exist for the project to allow for DAA.
We automatically confirmed the commits held a parent-
child relationship when extracting commit information. In
total, we obtain alerts for 535,000 commits across 104,121
projects for the breadth analysis.

2. Since publication, LGTM was deprecated and moved scanning
capabilities to GitHub [34].
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Depth Data Collection: For the depth study, we targeted
the latest 1,000 commits on the 1,000 most depended-upon
projects from NPM, PyPI, Maven, and Go ecosystems.
We defined most depended-upon projects as a ranking of
projects with the highest number of direct and transitive
dependents. The Open Source Insights platform compiled
each project’s dependency graph and released the data in
a Google Big Query snapshot to allow for a simple query.

In total, 1,980 of the most depended upon projects have
been scanned by LGTM from our initial scrape on March
3, 2022. The breakdown of projects for each ecosystem is
as follows: NPM (720 projects), Go (541 projects), PyPi
(545 projects), and Maven (174 projects). The initial target
was to pull the latest 1000 commits for each project. When
scraping each project’s GitHub repository for commits, we
found the average number of commits to be 387 across
the 1,980 projects, representing the entire lifecycle for
most projects. In total, we successfully obtained alerts for
406,222 commits across 1,980 projects.
LGTM Challenges: The LGTM alert data posed a chal-
lenge for DAA. The returned data from LGTM was
unreliable when CodeQL produced alerts, reducing the
number of commits in our ecosystem analysis. For example,
the project Celery With Flask is scanned on LGTM. The
project runs a Flask application in debug mode, which
triggers a CodeQL alert for allowing an attacker to run
arbitrary code through the debugger. Figure 6 in the
appendix shows the parent commit, fc45071, returns an
alert from the LGTM API. When querying the API for the
child commit, c3bbeeb (Figure 7), which only updates the
requirements.txt file, the alert is no longer returned
by the API. The subsequent commit to the child, 76f785e
(Figure 8), only updating the README.md file, reports the
Flask alert for the project from the API. We only considered
resolved alerts changing the associated file during the
commit using git diff commit information to avoid such
instances. We discuss the results and totals in Section 6.2.
Classifying Resolved Alerts: With DAA alerts obtained,
we are next interested in two key questions: Are these
alerts correct? and Was this fix publicly disclosed?. The
first question will validate the precision of DAA in this
setting, while the second question will give us a window
into how well DAA works in leading us to undisclosed
vulnerability fixes. Our claims on this second point will
be conservative: silent fixes are indeed a phenomenon that
occurs with some regularity. By using LGTM and CodeQL,
and the nature of vulnerability discovery in general, we
cannot claim to definitively identify all or even a majority
of fixes, silent or otherwise.

Because this section aims to explore fixes without
even partial ground truth, we rely on our automated
announcement pipeline to help identify announced alerts,
thus reducing effort on our end. To validate our findings,
we conduct a principled manual review to confirm our
automated announcement pipeline results. The manual
review determines whether a vulnerability is fixed and
validates whether project owners disclose the fix. The
manual review process is in the Appendix A.

As mentioned in Section 2 the fixed announcement
location can vary in prominence and specificity; therefore,
we have created a hierarchy to classify the announcement.
An announced fix is one where the specific vulnerability
fix is mentioned in a place where it would be reasonable

for a developer to use the project to check for updates.
Our other classification for fixes is silent fixes. These
silent fixes will contain no mention in the changelog or
a CVE. For our purposes, a “silent fix” may have a note
in a commit log or a code comment but not in one of
the locations mentioned earlier. Our justification for this
decision is that it is unreasonable to expect a developer
to review every commit message and code comment for
every project they include in their software.

6.2. Fixes in LGTM

In this subsection, we discuss our results from applying
DAA to the LGTM data, and then we validate these
findings and classify whether the fixes were silent or
announced. We demonstrate that DAA is a precise tool
for identifying fixes and that silent fixes are sufficiently
common to merit concern. We discuss both the breadth and
depth results providing high-level takeaways and examples
of silent fixes, announced fixes, and false positives.

In the breadth analysis of the ten most recent commits
across the four ecosystems scanned on LGTM, DAA pro-
duced 7,241 alerts representing potential security patches.
For the depth analysis, DAA initially produced 3,749 poten-
tially resolved security alerts. As described in Section 6.1,
we noticed inconsistent responses from the LGTM platform
on returned CodeQL alerts. Therefore, we filtered alerts
based on if files changed during the commit were also
the files with an associated alert. After automated filtering,
DAA tagged 172 projects accounting for 304 security-
related resolved alerts for the breadth analysis and 112
projects accounting for 209 alerts for the depth analysis.
We note that these are purely security-related alerts as
defined by CodeQL. We also confirmed that DAA did not
duplicate alerts between the breadth and depth analysis; any
initial duplicated alerts were counted within the breadth
analysis. Next, we determine the correctness and advisory
classification of these resolved alerts.

6.2.1. Fix Validation Advisory Classification. As pre-
viously discussed, we are interested in the correctness of
DAA and the correctness of our automated announcement
levels process of the fixes. Table 4 displays the resolved
alerts by project and alert count aggregated by CWE pillar
type. The results presented in the table have been manually
validated for correctness, along with the announcement
level. We discuss the performance of our automated an-
nouncement pipeline in Section 6.3. The following section
discusses more alert fix classifications with samples from
both silent and announced fixes, as well as false positives.
Silent Fixes: From our DAA alerts, we confirmed 111
projects with silent fixes, accounting for 237 alerts across
the breadth and depth study. We noted a surprising amount
of silent fixes related to improper neutralization, such as
reflective cross-site scripting and log injections for the
breadth study. In the depth analysis, we noted many fixes
related to improper control of resources, such as regex
denial of service (ReDoS) fixes. Additionally, we saw fixes
related to integer overflows, which ranked 13th in the most
dangerous software weaknesses of 2022 [40]. Despite these
fixes, project owners did not provide any form of a security
advisory for the patched vulnerability.
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TABLE 4: LGTM DAA classification by CWE pillar type across the breadth (172 projects) and depth (112 projects)
analysis.

CWE Pillar Type
Breadth Analysis Depth Analysis

Silent Announced False Positive Silent Announced False Positive
Proj. Alert Proj. Alert Proj. Alert Proj. Alert Proj. Alert Proj. Alert

CWE-284: Improper Access Control 22 79 2 2 2 5 2 3 2 2 0 0
CWE-710: Improper Coding Standards 7 7 2 2 0 0 5 7 5 7 0 0
CWE-664: Improper Control of a Resource 21 26 19 29 27 44 10 19 26 38 13 24
CWE-707: Improper Neutralization 18 34 17 27 15 22 6 8 9 13 6 12
CWE-682: Incorrect Calculation 8 9 4 4 1 6 8 39 7 14 6 14
CWE-693: Protection Mechanism Failure 2 2 3 4 2 2 2 4 3 3 2 2

Totals 78 157 47 68 47 79 33 80 52 77 27 52

Percentage of Whole 45.35% 51.64% 27.33% 22.37% 27.33% 25.99% 29.46% 38.28% 46.43% 36.84% 24.11% 24.88%

An example silent fix is within three high-profile
NPM projects fixing ReDoS vulnerabilities. Those three
projects are node-tar (18.7M weekly downloads), clean-
CSS (12.7M weekly downloads), and ua-parser-js (7.8M
weekly downloads). Specifically, in node-tar, on August 3,
2021, a developer pushed a commit to fix a potential regular
ReDoS vulnerability. While the developer notes in the
commit log that the vulnerability is unlikely to be exploited,
it would be theoretically possible to exploit it if a user
passes untrusted input into a particular function. Various
releases appeared for the project, but the repository’s
changelog has not been updated since May 24, 2020. We
consider the fix to be a silent fix in a highly used project.

For another silent fix example, we reference the Python
project streamlit, which allows for easy transformation
of data scripts into web applications [55]. On April
21, 2022, a developer opened a commit to remove a
path from a 404 response, which falls under a stack
trace exposure vulnerability. Such vulnerabilities could
lead to an attacker learning sensitive information. The
developer simply removed the path from the response
code to fix the vulnerability. Deeper in the pull request,
the developer acknowledged they should not risk exposing
such information through the browser. In the changelog, the
project failed to mention any vulnerability type surrounding
information exposure or stack trace exposure.

We also note that some of the alerts resolved in
Java fall under dependency issues for using JFog Bintray,
which houses JCenter for hosting Java artifacts. Access
to the deprecated artifact repository JFrog could lead to
eventual supply chain attacks from attackers targeting
deprecated repositories. A Yahoo-owned project, EGADS,
on December 22, 2021, removed the Bintray dependency
link and the Log4j dependency from the projects pom.xml
file, following the Log4J vulnerability (CVE-2021-44228).
Based on Defintion 4, we consider this a silent fix as no
changelog exists for the project, and maintainers removed
the dependencies from the project.
Announced Fixes: From our sampled data, we confirmed
47 projects from the breadth analysis and 52 from the
depth analysis with announced fixes. The most commonly
announced fix among the data was for ReDoS attacks. Gen-
erally announced fixes were mentioned in the changelog
and often added the initial pull request or a commit SHA
that points back to the security fix.

An example announced fix from the breadth study is
from a WebSocket emulation Python-based server, SockJS-
tornado [53]. The project has 857 stars on GitHub, with
2,089 other projects depending on SockJS-tornado. On
October 19, 2018, a user opened an issue to fix an URL

TABLE 5: Evaluation of the automated announcement
pipeline on LGTM results across the 382 announced and
silent fixes from Table 4.

TP FP FN TN Precision Recall F1

Breadth 157 39 0 29 80.10% 100.00% 88.95%
Depth 74 51 6 26 59.20% 92.50% 72.20%

Totals 231 90 6 55 71.96% 97.47% 82.80%

path XSS vulnerability. The issue includes a proof of
concept to replicate the vulnerability on the users’ local
host. The same day, a project owner merged a fix into
the main branch to escape the user’s callback input. The
project owner also bumped the project to version 1.0.6 on
PyPI within the same day, accompanied by a changelog
stating: XSS security fix for the HTMLFILE transport.
False Positives: While expected, the precision dropped
from the evaluation to the LGTM ecosystem analysis due
to more deletions and advanced code refactors. The false
positives were generally related to refactors or changed
context undetectable by CodeQL after the change, thus
not triggering an alert. For example, one project with 21
associated resolved alerts entirely moved code to a new
repository and then used the new repository as an import.

Another example of a false positive is from the Apache
Airflow project [57]. The original CodeQL alert regarded
an untrusted URL redirection in four locations. A developer
pushed a commit for some code cleanup to remove
duplicating code and create a single function with the same
functionality that contained the untrusted URL redirection.
DAA detected that the overall count of alerts of the same
type was reduced, producing resolved alerts. We consider
this a weakness of CodeQL to not correctly understand
the code’s data flow to realize the function is still called
four times throughout the program.

6.3. Automated Announcement Evaluation

During the manual evaluation process of the LGTM
DAA alerts, we also assessed the correctness of the
automated announcement pipeline. We evaluate the breadth
and depth analysis approach across 382 positive alerts from
Section 6.2.1. As mentioned in the previous section, when
evaluating the DAA results, we confirmed the project uses
a changelog and the announcement level (i.e., announced
in the changelog or a CVE) for a fix. We would then
read the changelog and confirm that the developers either
announced or did not announce the security-related fix from
DAA. For the CVE match, we initially matched against
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all of the project names and then confirmed whether the
DAA fix was related to the CVE. True positives for the
automated announcement pipeline are correctly labeled
silent fixes. False positives are labeled as silent, but the
project announced the fix. False negatives are labeled as
announced, but the project silently fixes the security-related
issue. True negatives are correctly labeled announced fixes.

Table 5 displays the results from the analysis across
the 382 DAA alerts. Overall, the automated pipeline
produces an acceptable F1 score of 82.80%. In rare cases,
the pipeline would produce false negatives, for example,
labeling fixes as announced, but the fix was silently patched.
These instances occurred when the announcement was
related to a different fix and not the fix reported by DAA.
False positives were generated in cases when the pipeline
labeled a fix as silent but was announced. An example
is when a project does not maintain a changelog within
GitHub but on its product’s website. Other false positive
cases were when the text did not contain standard security
terms. For example, the text Fix unsafe shell command
constructed from library input is in a release. In such
instances, git-vuln-finder cannot detect the context of the
message. Future research should explore more advanced
approaches to determine the context of these messages as
security-related fixes.

In terms of matching CVEs, we were able to correctly
detect eight advisories from the OSI database for true
positive DAA alerts. Of particular interest is the project
path-parse with nearly 26M downloads per week and used
by 13.8M. On May 13, 2021, the project pushed a patch to
avoid a ReDoS attack. CVE-2021-23343 was published on
May 4, 2021, disclosing the possible attack. The project
does not have a changelog and fails to mention updates in
the releases tab of GitHub, meaning if users do not use
other sources (e.g., NVD, OSI, DAA), they, too, would
miss such a critical patch. The automated pipeline missed
two advisories from OSI, which did not have the commit
patch link directly in the reference links. We did find the
commits for a missing reference through an external proof
of concept link, and the other commit was referenced
through a pull request. The method of matching purely on
the project name and commit patch links proved effective.

6.4. Threats to Validity

Like all research, the analysis of LGTM-enabled
projects has several validity threats. The principal concern
is that Section 5 showed that each SAST tool has a
low recall for known vulnerabilities. Because we have
no ground truth for the LGTM projects, we can assume
that we only see a fraction of the total vulnerabilities.
Second, our study is not longitudinal, as it is meant only
to demonstrate the scalability and precision of DAA. Third,
while we relied on independent review and a thorough
process for validating each alert, we may have misclassified
an alert just as in any other human endeavor.

7. Discussion

Throughout the paper, we worked with a commit
level analysis. The decision to pursue the commit level
represents what DAA would encounter in the real world
(e.g., through CI/CD implementations or how LGTM

operates). Sometimes, a commit level analysis may not
be appropriate, as an alternative semantic version level
analysis for DAA is possible. That is when P is the
semantic version (SemVer3) that comes immediately after
P ′. In an earlier approach to DAA, we used semantic
versions to evaluate and perform an empirical study of the
PyPI ecosystem.

Similar to our current approach, our previous approach
enhanced the set of alerts produced by the SAST tool with
additional program context but then used existing code-
clone detection tools to identify the existence of refactoring.
Using code-clone detection tools restricted DAA resulting
in a lower recall than our current approach of a hierarchy
analysis. Despite this, we applied the technique to a May
2021 snapshot of PyPI on the latest two semantic versions
using only Bandit as the underlying SAST tool. Similarly,
we found 58.33% of resolved alerts were silent fixes.
Responsible Disclosure: Prior to disclosure, we emailed
developers informing them of our plans to release the fixes
publicly. We gave developers an appropriate timeline (30
days) to respond before the disclosure; two developers
requested non-disclosure, which we did not include in the
public release. After the timeline, we submitted our current
silent fixes findings to the Global Security Database [9] to
disclose the results from Section 6.2.1. The Global Security
Database is an open-source community project supported
by the Cloud Security Alliance that aims to improve
the quality and usability of vulnerability databases by
involving the community in a collaborative effort. During
the previous iteration, we disclosed the findings to PyUp,
the parent company of SafetyDB [48]. Their engineers
validated the vulnerabilities and added 55 projects to their
vulnerability database. The two databases provide security
updates to thousands of companies.

8. Related Work

Our work relates to multiple areas: static analysis for
security, large-scale vulnerability detection, identifying
vulnerability fixes, and differential static analysis.
Static Analysis in Security: Static analysis is now standard
practice for finding security flaws [7], [2], [5] in projects of
virtually every major language ecosystem [13], [65], [23],
[38], [27], [62], [36]. While static analysis can be effective,
analysts must overcome poor initial configuration, faulty
warning messages, and frequent false positives [25], [52],
[8], [41]. Analysts must also accept that static analysis
cannot detect all vulnerabilities [1], [64], the use of
multiple tools can improve recall [11].

Static analysis is particularly well-suited for large-scale
analysis ranging from projects to entire ecosystems [30].
In fact, static analysis has demonstrated how security
vulnerabilities can propagate through software supply
chains [3], [45]. Zimmermann et al. [68] recently analyzed
the npm ecosystem and found that up to 40% of projects
have a dependency with a known vulnerability. They also
discovered that, on average, an NPM project would depend
on 79 third-party projects, severely increasing the attack
surface. Duan et al. [12] found 339 malicious projects
across registries (PyPI, Npm, and Ruby Gems) by applying
metadata, static, and dataflow analysis techniques. Kula

3. major.minor.patch (https://semver.org/)

13

https://semver.org/


et al. [31] found across 4,600 GitHub projects that nearly
81.5% of them have outdated dependencies.
Identifying Vulnerability Fixes: Prior work explored dis-
covering vulnerability fixes with machine learning. These
approaches all suffer from similar weaknesses that DAA
surpasses: intensive ground truth datasets continuously
requiring updates for training and restricted to specific
languages, binary classification of commits without vulner-
ability context, unknown resolved vulnerability locations,
and manual effort to determine announcement levels.
Some approaches focus on identifying security-relevant fix
commits by building classifiers on the commit log message
and patch information of a commit [59], [51] and more
recently by appending commit-issue links [42]. Wang et
al. [61] use 61 different features that may appear in a
patch (e.g., the number of changes for specific operators)
to detect vulnerability fixes. VulFixMiner [66] uses deep
learning at a commit level to detect vulnerability fixes on
52 projects. Additionally, these prior approaches scale to
only tens of projects, whereas we scale to thousands.
Differential Static Analysis: Differential static analysis
has started to attract researchers [33] but has yet to use
different granularity levels to identify resolved vulnera-
bilities. Brumley et al. [6] leveraged static and dynamic
analysis to determine various check differences between
two programs to build exploits for unpatched software
versions. Partush and Yahav [44] focused purely on C
to compute the abstract semantic difference between two
programs, one being the unpatched version and the other
being the patched version. Differential assertion checking
(DAC) verifies the correctness of assertions over subsequent
program versions and pairs with SymDiff to verify bug
fixes [32]. Unlike our approach, Verification Modulo
Versions (VMV) [39] focuses on identifying new alerts and
reducing static analysis alarms using semantic information
from previous program versions. SPAIN [63] considers
two binary versions of a project and discovers security
patches by comparing control flow graphs and semantic
function count to determine if a patch is security-related.
However, SPAIN is less scalable than DAA, requiring more
heavyweight analysis and knowing when developers might
have applied security patches.

LGTM [34] is a platform running CodeQL against
OSS projects, and then a user interface displays the alert
types and location. While not a forefront feature, they also
display new and fixed alerts throughout the commit history.
LGTM uses three strategies to understand new and fixed
alerts. The first is location-based matching, which considers
the starting line position of the alert. Second, snippet-
based matching considers the start and end positions of the
alerts. Finally, the hash-based alert matching considers the
surrounding code to handle refactored code. While LGTM
attempts to handle refactors for fixes, their approach is too
fine-grained and often imprecise, leading to false positives.

9. Conclusion

Software vendors increasingly rely on security advi-
sories for open-source software dependencies to ensure the
security of their products. Unfortunately, not all vulnera-
bility fixes are announced and pose harm to the unaware
end consumer. This paper introduced Differential Alert
Analysis (DAA), an algorithm that uses lightweight and

imprecise static analysis security testing (SAST) tools
to discover the existence of vulnerabilities in software
projects. We described our design and proof-of-concept
implementation of DAA for various tools and languages.
Using a ground-truth dataset of vulnerabilities for both
Java and Python, we showed that DAA provides very
high precision even with a noisy and imprecise SAST
tool. We further used our DAA tool to evaluate a March
2022 snapshot of the LGTM projects in a breadth and
depth study, including the most depended projects, in four
separate ecosystems, finding a variety of silent fixes. We
demonstrate that DAA can provide a valuable primitive for
transparency to aid software vendors who rely on open-
source software.
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1. Manual Inspection Methodology

1) An automated set of files containing the following
information is generated to familiarize the reviewer
with the resolved alert they are reviewing.
• Project Name
• LGTM Link
• GitHub Commit Link
• Alert Info
• Alert Type
• Alert Location (File, Function, Line)

2) The next process is to confirm the vulnerability fix
through a commit in the associated repository for the
project.
• Follow the GitHub commit link within the file.
• Go to the line location with the fixed vulnerability

in the repository.
• Confirm the change in code that fixed the alert.

– Validation is simply noting developer changed
the code that initially tagged the alert to a safer
form.

– E.g., yaml.load→yaml.safe_load

3) Find the changelog associated with the project, gen-
erally within the repository/releases/tags tab. In some
cases, projects maintain a changelog on their own
site.
• Typical files for a changelog (HISTORY.rst,

CHANGES.md, CHANGELOG.MD, etc. . . ).
• “Releases” tab in GitHub

4) Review the changelog for the associated patched
version of the project and determine the level of the
announcement.
• Announced: Explicit/Implicit mention of vulnera-

bility fix
• Silent: No mention
• See Definition 2

5) Finally, search for a project (i.e., OSVDB, GHSA,
OSI) to determine if a CVE exists to determine if
classification changes.
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Figure 6: Parent commit (fc45071) for project
Miguelgrinberg/flask-celery-example

{
"version": "2.0.0",
"runs": [

{
"tool": {
"name": "Semmle",
"version": "1.31.0-SNAPSHOT",

},
"files": {
"app.py": {
"fileLocation": {

"uri": "app.py"
}
}

},
"results": [
{
"ruleId": "python-queries:py/flask-debug",
"partialFingerprints": {

"primaryLocationLineHash": "592eb5113a7053ce:1"
}
}

],
"resources": {
"rules": {
"python-queries:py/flask-debug": {...}
}
}

}
]

}

Figure 7: Child commit (c3bbeeb) for project
Miguelgrinberg/flask-celery-example with missing
results.

{
"version": "2.0.0",
"runs": [

{
"tool": {
"name": "Semmle",
"version": "1.31.0-SNAPSHOT",
"language": "en-US"

},
"resources": {
"rules": {}

}
}

]
}

Figure 8: Subsequent commit (76f785e) for project
Miguelgrinberg/flask-celery-example with matching results
from the initial parent commit.

{
"version": "2.0.0",
"runs": [
{
"tool": {

"name": "Semmle",
"version": "1.31.0-SNAPSHOT",

},
"files": {

"app.py": {
"fileLocation": {
"uri": "app.py"

}
}

},
"results": [

{
"ruleId": "python-queries:py/flask-debug",
"partialFingerprints": {
"primaryLocationLineHash": "592eb5113a7053ce:1"

}
}

],
"resources": {

"rules": {
"python-queries:py/flask-debug": {...}
}
}

}
]

}
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