
A Study of Application Sandbox Policies in Linux
Trevor Dunlap

North Carolina State University
Raleigh, North Carolina, USA

tdunlap@ncsu.edu

William Enck
North Carolina State University
Raleigh, North Carolina, USA

whenck@ncsu.edu

Bradley Reaves
North Carolina State University
Raleigh, North Carolina, USA

bgreaves@ncsu.edu

ABSTRACT
Desktop operating systems, including macOS, Windows 10, and
Linux, are adopting the application-based security model pervasive
in mobile platforms. In Linux, this transition is part of the move-
ment towards two distribution-independent application platforms:
Flatpak and Snap. This paper provides the first analysis of sandbox
policies defined for Flatpak and Snap applications, covering 283
applications contained in both platforms. First, we find that 90.1%
of Snaps and 58.3% of Flatpak applications studied are contained
by tamperproof sandboxes. Further, we find evidence that package
maintainers actively attempt to define least-privilege application
policies. However, defining policy is difficult and error-prone.When
studying the set of matching applications that appear in both Flat-
pak and Snap app stores, we frequently found policy mismatches:
e.g., the Flatpak version has a broad privilege (e.g., file access) that
the Snap version does not, or vice versa. This work provides confi-
dence that Flatpak and Snap improve Linux platform security while
highlighting opportunities for improvement.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
access control, sandbox policy, linux applications
ACM Reference Format:
Trevor Dunlap, William Enck, and Bradley Reaves. 2022. A Study of Appli-
cation Sandbox Policies in Linux. In Proceedings of the 27th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT) (SACMAT ’22),
June 8–10, 2022, New York, NY, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3532105.3535016

1 INTRODUCTION
Desktop application security is undergoing a fundamental change.
Over the past decade, mobile platforms have altered users’ expec-
tations about application security. Despite permission usability
concerns [15, 16], the general notion that applications are secu-
rity principals is now commonplace. This shift from user-based to
app-based access control has had a significant positive impact on
mobile platform security, and it is now arriving on desktop plat-
forms. Windows 10 and macOS distribute sandboxed apps through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’22, June 8–10, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9357-7/22/06. . . $15.00
https://doi.org/10.1145/3532105.3535016

their application stores and provide permission options in system
settings that mirror mobile platforms.

Linux application distribution is also moving to per-application
sandboxing, and Linux advocates believe this will be the dominant
application distribution paradigm in the near future [8, 40, 42]. Ac-
tions by widely used distributions support this belief. In April 2020,
Ubuntu made the Snap Store the default application installation
mechanism, only using traditional repositories when a Snap is un-
available [39]. Many other popular distributions, including CentOS,
Mint, and Fedora Workstation, ship with Flatpak support.

To our knowledge, there is no prior work studying the security
protection provided by the Flatpak and Snap ecosystems. On the
surface, any access control protections around an application would
provide better security for the user, as there are currently none. For
example, all traditional applications can read and write a user’s files
(e.g., browser authentication cookies) and access attached peripher-
als (e.g., a webcam). Nevertheless, some critics claim that Flatpak
and Snap provide users a false sense of security, noting sandbox
escapes and unpatched CVEs [17, 29]. While the observation that
these issues are possible is correct, the issues are created by package
maintainers, not the platform design.

Our work represents the first broad empirical analysis of sandbox
policies defined for Flatpak and Snap applications. We downloaded
all 919 Flatpak applications from Flathub and all 2,264 Snap ap-
plications from the Snap Store in September 2020, along with a
refresh in July 2021 to provide a longitudinal analysis. We iden-
tified a set of 283 matching applications to answer the following
research questions. RQ1: What access control policy features do
package maintainers use? Flatpak and Snap use different sandbox-
ing techniques and different policy languages. Flatpak policy relies
on package maintainers providing largely open-ended policy argu-
ments, whereas Snap provides a menu of permissions. RQ2: How
often do package maintainers attempt to approximate least-privilege?
Other application ecosystems (e.g., Android) are well known to be
over-privileged [14, 38]. RQ3: Do package maintainers specify cor-
rect and secure policy? Sandbox policies require packagemaintainers
to balance functionality and security. Under-privilege can lead to
poor user experiences, whereas certain types of over-privilege can
lead to sandbox escapes.

Our analysis led to the following major findings.

• Flatpak and Snap indeed improve the security of Linux deploy-
ments. In a sample of 283 matching applications, we find that
90.1% of Snaps and 58.3% of Flatpaks specify policies that
prevent sandbox escapes. We found that package maintain-
ers overwhelmingly use fine-grained permissions for system
and session inter-process communication (IPC) rather than
coarse-grained permissions that provide access to the entire
system and session bus. Fine-grained permission choices
limit the abilities of a malicious or compromised app. This

https://doi.org/10.1145/3532105.3535016
https://doi.org/10.1145/3532105.3535016

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

data overturns and directly contradicts the common belief
that there is little security benefit to Flatpak [17].

• Flatpak and Snap maintainers clearly attempt least-privilege
policies. For Snap, when considering device, system IPC, and
session IPC permissions, nearly 3.1 times as many apps
use fine-grained permissions over coarse-grained permis-
sions. For Flatpak, when looking at filesystem, device, system
IPC, and session IPC permissions, on average, 1.7 times as
many apps use fine-grained permissions compared to coarse-
grained permissions. Over a ten-month period (September
2020 to July 2021), on average, 30.2% of apps changed their
policy for both Flatpak and Snap. Broadly, the policy changes
consisted of introducing new fine-grained permissions or
transitioning coarse-grained permissions to fine-grained per-
missions. These findings suggest package maintainers are
engaged in balancing functionality with security.

• Despite the sincere effort, maintainers fail to specify correct,
least privilege policies.Application testing by a subject matter
expert identified clear instances of both over- and under-
privilege. This finding motivates the need for automated
tools that provide policy suggestions for packagemaintainers
during packaging.

Availability: Our scripts and data (sans the app packages) are
available at https://github.com/wspr-ncsu/linux-app-sandbox.

The remainder of the paper proceeds as follows. Section 2 pro-
vides background on Flatpak and Snap. Section 3 presents our threat
model and analysis goals. Section 4 describes our methodology. Sec-
tion 5 details our findings. Section 6 discusses the threats to validity.
Section 7 provides recommendations. Section 8 overviews related
work. Section 9 concludes.

2 BACKGROUND
The Android and iOS mobile platforms have made app-based secu-
rity principals commonplace. Per-application sandboxes are now
emerging in Microsoft Windows, Apple macOS, and Linux desktop
distributions. The inclusion of per-application sandboxes in desktop
platforms has piggybacked on new software distribution methods
(e.g., app stores in Windows and macOS). In Linux, where apt and
yum based software repositories are common, sandbox adoption is
being driven by distribution-independent software packages, with
Flatpak and Snap emerging as the de facto package ecosystems.1

Flatpak and Snap have key similarities and differences. Both dis-
tribute applications through app stores, often through community-
based efforts. Flathub is the de facto store for Flatpak, while the
Snap Store is the only allowed store for Snap. The Flatpak and Snap
platforms are loosely analogous to Android and iOS, respectively,
in that Flatpak is open, enabling arbitrary app stores, and Snap is
under tight control, only allowing the Canonical/Ubuntu managed
Snap Store. In contrast to mobile platforms, the package maintainer
in both Flathub and the Snap Store is commonly a different entity
than the software developer, particularly for proprietary applica-
tions (e.g., Zoom, Slack, Microsoft Teams). This distinction between
package maintainer and software developer is important for our

1AppImage is a relatively unpopular third alternative. It does not provide access control
protection, therefore we do not discuss it further.

threat model (Section 3). Finally, Flatpak is designed to run in a desk-
top session, whereas Snap is designed for both desktop and server
applications. This paper focuses only on desktop applications.

Despite their high-level similarities, Flatpak and Snap have fun-
damentally different implementation strategies. Here, we focus
specifically on the details relevant to the application sandbox. We
separate our discussion into the sandbox enforcement and policy.

2.1 Sandbox Enforcement
Flatpak and Snap take significantly different approaches to enforc-
ing per-application sandboxes. Flatpak uses primitives from popular
container technologies (e.g., Docker). Specifically, it builds on Bub-
blewrap [10], which uses Linux’s user namespaces (e.g., cgroup, mnt,
ipc) to allow unprivileged users to use container features. Initially,
Bubblewrap creates a newmount namespace and defines what parts
of the filesystem are visible in the sandbox. Specific directory paths
(e.g., the user’s home directory) can be mounted into the names-
pace based on the sandbox policy. The use of Linux namespaces
also ensures that /proc only shows processes in the app sandbox.
Flatpaks also only have access to a loopback network interface by
default. Finally, Flatpak further hardens the environment by using
seccomp to restrict specific risky system calls (e.g., ptrace).

In contrast, Snap uses traditional OS mandatory access controls
(MAC) techniques to sandbox applications. Specifically, it uses the
AppArmor Linux Security Module (LSM), automatically creating
AppArmor profiles that confine the sandboxed application. Ap-
pArmor defines file access control policy using file paths, which
is more flexible than mount namespaces. Specifically, it allows a
Snap to access some files but not all (e.g., hidden dot-files) in a
specified directory. This difference has meaningful implications in
our empirical study. By using AppArmor, Snap sandbox policies
inherit its expressive enforcement capabilities, including the abil-
ity to enforce policies for Linux capabilities, network, mounting,
pivot_root, ptrace, signals, dbus, and Unix domain sockets. To han-
dle Apparmor enforcement limitations, Snap also uses seccomp to
filter system calls and cgroups to control access to devices. Most
sandbox protections are not available if a distribution does not use
AppArmor (e.g., Fedora uses SELinux).

Both Flatpak and Snap applications can bypass some aspects of
sandbox enforcement by using XDG desktop portals, which are a
form of user-driven access control [34] that presents a trusted user
dialog box before a privileged action can be performed. A full list of
XDG desktop portals is available in the portal documentation [30].
Flatpak is designed for desktop applications, which provide access
to XDG desktop portals by default. Any Snap with the desktop per-
mission has access to XDG desktop portals. However, both Flatpak
and Snap require application code modification to use XDG desktop
portals, which is not a viable alternative for package maintainers
who are not also the application developer.

2.2 Sandbox Policy
Flatpak and Snap applications are given permissions that define
which interfaces and resources the application may access. In con-
trast to mobile platforms such as Android, where app permissions
mediate remote procedure calls (RPCs) to middleware services,

https://github.com/wspr-ncsu/linux-app-sandbox

A Study of Application Sandbox Policies in Linux SACMAT ’22, June 8–10, 2022, New York, NY, USA

1 {
2 "app -id": "org.inkscape.Inkscape",
3 "runtime": "org.gnome.Platform",
4 "runtime -version": "3.38",
5 "sdk": "org.gnome.Sdk",
6 "command": "inkscape",
7 "finish -args": [
8 "--share=ipc",
9 "--socket=x11",
10 "--socket=wayland",
11 "--filesystem=host",
12 "--filesystem=xdg -run/gvfs",
13 "--talk -name=org.gtk.vfs",
14 "--talk -name=org.gtk.vfs.*"
15],
16 "modules": [
17 {
18 "name": "inkscape",
19 "sources": [
20 {
21 "type": "archive",
22 "url": "https :// inkscape.org/gallery/item

/21571/ inkscape -1.0.1. tar.xz"
23 }
24]
25 }
26 ...
27]
28 }

Figure 1: Simplified JSON Flatpak Manifest for Inkscape

1 name: inkscape
2 version: 1.0.1 -3 bc2e813f5 -2020 -09 -07
3 apps:
4 inkscape:
5 command: bin/inkscape
6 plugs:
7 - desktop
8 - desktop -legacy
9 - gsettings
10 - opengl
11 - wayland
12 - x11
13 - home
14 - unity7
15 - cups -control
16 - removable -media
17 - dot -config -inkscape
18 slots:
19 - inkscape -dbus
20 viewer:
21 command: bin/inkview
22 plugs:
23 - desktop
24 ...
25 slots:
26 inkscape -dbus:
27 interface: dbus
28 bus: session
29 name: org.inkscape.Inkscape

Figure 2: Simplified Snap Manifest for Inkscape

Linux desktop distributions have a largely file-based access con-
trol perspective. Even devices are accessed via files. Outside of
files, Linux’s Desktop Bus (D-Bus) is the primary interprocess com-
munication (IPC) mechanism used by graphical applications to
communicate with system services and each other (though some
legacy interfaces still use Unix domain sockets). D-Bus defines two
types of buses: a single system bus allows applications to use system
services (e.g., NetworkManager, BlueZ), and a per-login session bus
allows multiple applications run by the user to communicate.

For both Flatpak and Snap, the package maintainer defines the
permission policy within the application’s manifest file. The Flat-
pak manifest can be defined in both JSON and YAML, while the
Snap manifest can only be defined in YAML. The Flatpak and Snap
permission policy specifications differ significantly. The Flatpak
policy is much lower level, defining permissions as parameters to
broad types of system interfaces (e.g., filesystem). This specification
is much more flexible, allowing the use of wildcards in some cases.
In contrast, the Snap policy uses pre-defined permission names.
The specified permissions are then used to generate an AppArmor
profile for the application. Example policies for Flatpak and Snap
are shown in Figures 1 and 2.

2.2.1 Flatpak Policy. Flatpak permissions are defined as arguments
categorized in six types of interfaces: filesystem, device, share, s-
ocket, talk-name, and system-talk-name. The filesystem interface
is the most flexible. Paths can be defined directly (e.g., /path, ~/pa-
th) or via predefined names such as home, host, host-os, host-etc.
It also supports freedesktop.org’s special XDG user directories,2
e.g., xdg-desktop, xdg-documents, and xdg-download. For the home

and xdg-* directories, an optional path can be appended for more
refined access control. Interestingly, host filesystem access does not
provide access to /dev. Rather, Flatpak uses a separate device policy

2Note that XDG user directories are different than XDG desktop portals. XDG directo-
ries provide user-configurable locations for common user directories (e.g., Documents).

definition, possible values are dri (graphics), kvm (virtualization),
shm (shared memory), and all. The all value allows access to all
device nodes in /dev except /dev/shm. Notably, the device policy
specification is much less flexible than Snap. The share interface
lists subsystems to share with the host system, supporting values
of network and ipc. The socket interface also defines a fixed set
of parameters: x11, wayland, fallback-x11, pulseaudio, session--
bus, system-bus, ssh-auth, pcscd, and cups. In some cases, socket
permissions are coarse-grained controls that subsume other policies.
The session-bus and system-bus sockets provide full access to the D-
Bus session and system buses. Instead, package maintainers should
use the talk-name and system-talk-name policy interfaces to define
fine-grained access to the D-Bus session and system bus. D-Bus
interfaces accept arguments corresponding to established D-Bus
namespaces. Wildcards are also permitted.

Flatpak can also provide per-application storage using the persi-
st configuration. Using persist, the package maintainer can specify
paths (e.g., ~/.myapp) that cause the sandbox to bind a mount to a
per-application location (e.g., ~/.var/app/org.my.App/.myapp). As
such, the persist configuration allows the package maintainer to
keep the Flatpak application’s configuration files separate from
non-Flatpak versions of the application. In doing so, the package
maintainer may eliminate or greatly reduce the need for the appli-
cation to access files in the user’s home directory.

Finally, end users can override Flatpak permissions, either for the
entire system or just for the user account. Overrides for the user
account are stored in ~/.local/share/flatpak/overrides. Users can
make these overrides via the flatpak override command or via the
third-party Flatseal Flatpak application, which provides a graphical
interface to configure Flatpak permissions.

2.2.2 Snap Policy. The Snap sandbox policy uses plugs and slots
to define permissions. Conceptually, a plug grants privilege to a

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

consumer (e.g., RPC caller), whereas a slot defines privilege require-
ments to access a provider (e.g., RPC callee). Slots allow package
maintainers to define custom permissions for the application’s in-
terfaces and protect key interfaces and resources. Slots are useful
for Snaps packaging system services (which are not our focus).

Snap defines a wide variety of plugs that define access to the
file system, network, IPC, devices, and other system resources. In
contrast to Flatpak permissions, Snap’s plugs are very specific:
e.g., audio-playback, camera, joystick, pulseaudio, bluez, gpg-keys,
ssh-keys. Of interest is the home plug, which allows access to non-
hidden files owned by the user in the $HOME directory. Some plugs
have associated attributes that parameterize the plug. For example,
the personal-files plug has read and write attributes that define
sets of files and directories that can be accessed. A full list of the
Snap supported interfaces can be seen in the documentation [37].

Similar to traditional Linux MAC access control models, Snap
package maintainers must also specify a confinement mode, which
may be strict, classic, or devmode. Most Snaps use strict mode,
indicating the plug and slot policy should be enforced. In contrast,
classicmode treats the application as a traditional package (i.e., no
confinement), which requires manual approval by the Snap Store to
ship. Finally, devmode logs policy denials instead of enforcing them.

Not all plugs are enabled by default. The Snap permission docu-
mentation [37] includes an auto-connect field. When auto-connect
is “no,” users must manually enable the permission. In contrast to
Flatpak, there is an upper bound to the permissions that the end-
user can grant. However, this default auto-connect behavior for
plugs does not apply to all applications. Package maintainers can
appeal to the Snap Store for their application to have auto-connect
enabled. Requests approved by the Snap Store are distributed to
end hosts in the form of a signed snap-declaration and available
via the snap known snap-declaration command.

3 THREAT MODEL AND ANALYSIS GOALS
For the purposes of this paper, we consider three entities: software
developer, package maintainer, and end-user. Consistent with tra-
ditional uses of sandboxes, we consider two scenarios. In the first
scenario, the application is benign but may be exploited (e.g., ren-
dering a malicious PDF), so all three entities are mutually aligned.
In the second scenario, the application logic acts against the in-
terests of the end-user by performing either malicious or privacy-
invasive actions. In this scenario, the software developer is not
trusted, but the package maintainer and the end-user are trusted.
We do not consider scenarios where the package maintainer is
malicious (e.g., including a malicious library in the package). Trust-
ing the package maintainer is reasonable because in app stores
such as Flathub, the build configuration is publicly available (https:
//github.com/flathub), and the build process is automatic.

Our trusted computing base (TCB) includes the sandbox enforce-
ment mechanisms used by Flatpak and Snap. We trust that the
mechanisms provide complete mediation and, given a proper pol-
icy, are tamperproof. Snap’s AppArmor enforcement mechanism
uses the well-studied LSM interface [19, 23, 47]. Auditing Flatpak’s
Bubblewrap [10] sandbox is beyond the scope of this paper. Our
TCB also includes the Linux kernel, system daemons, and their
respective access control enforcement and policies.

This paper is concerned with the sandbox policies defined by the
package maintainer. Policy weaknesses can take two forms.
Over-privileged Policy: Ideally, the sandbox policy should follow
the principle of least privilege [35]. In practice, true least-privilege
policies are not achievable. Similar to prior work studying over-
privilege in Android applications [14], we seek to characterize how
well the sandbox policies defined by Flatpak and Snap package
maintainers approximate least privilege. In contrast to Android,
where API to permission mappings can be created by analyzing
the middleware source code [1, 5], Linux applications access re-
sources in a myriad of ways and use a variety of programming
languages. Also, in contrast to Android, Flatpak and Snap provide
both coarse-grained and fine-grained permissions for accessing
similar resources. In this paper, we study over-privilege from the
perspective of how policy is specified. It also uses runtime testing
of the same application to identify over- and under-privilege.

Over-privilege is a multi-dimensional question. An application
can be over-privileged in one dimension (e.g., filesystem) and under-
privileged in another dimension (e.g., device access). Therefore, our
characterization considers the following dimensions:

Filesystem permissions provide access to files and are typi-
cally specified as a file path.

Device permissions provide access to an internal device or
external peripheral. Such permissions may provide access di-
rectly to a device node in /dev or indirectly through a system
service that is devoted to that device (e.g., PulseAudio).

Network permissions allow the application to communicate
with servers and applications on other hosts.

System IPC permissions provide access to interfaces of sys-
tem daemons, which provide host-level configuration or
functionality (e.g., NetworkManager).

Session IPC permissions provide access to interfaces of other
applications or daemons running within the user’s session,
often as the user’s identity.

For each of these dimensions, our analysis identifies if an application
has: (1) no access, (2) fine-grained access, or (3) coarse-grained access.
Note that we only consider the policy specification, and “no access”
may include access through the XDG desktop portal trusted UI.
Policy Tamperproofness: The tamperproofness of a reference
monitor [4] is contingent on the tamperproofness of both the en-
forcement and the policy. A sandbox policy is not tamperproof if it
allows an application to perform unconfined execution outside of
the sandbox. For Flatpak applications, this can occur in two ways.
First, the policy may allow the application to write to a configura-
tion file (e.g., ~/.bashrc) that results in code execution outside the
policy. Second, the policy may allow the application to change its
policy (e.g., writing to the per-user policy overrides in the user’s
home directory [22]).3 For Snap applications, unconfined execution
only occurs when the application executes in classic or devmode
confinement modes. A Snap application with the home permission
cannot write to ~/.bashrc, because the home permission does not

3At the time of writing, applications with the home permission could access
~ /.local/share/flatpak/overrides; more recent versions of Flatpak require explicit per-
mission to access this directory.

https://github.com/flathub
https://github.com/flathub

A Study of Application Sandbox Policies in Linux SACMAT ’22, June 8–10, 2022, New York, NY, USA

Install Snap
Applications

 Extract Snap
YAML files

Scrape

Flatpak Store

Scrape

Snap Store

Extract data
parameters

 Sandbox
Permission
Mapping

Comparing
Sandbox

Permissions

Fuzzy Wuzzy
Name Matching

Download
Flatpak

manifests from
Github

Data Collection Matching Applications

Direct Name
Comparison

Manual Search

App Command
Matching

Manual
Application

Testing

Analysis

Figure 3: A high-level architecture of our approach

give access to hidden files (i.e, those that begin with a .).4 This dif-
ference in policy semantics highlights an important contrast in the
enforcement mechanisms used by Flatpak and Snap. Flatpak grants
access to files based on mount points, whereas Snap’s AppArmor
enforcement can define policy to file paths.

Finally, certain aspects of the runtime environment may prevent
the sandbox reference monitor from achieving complete mediation.
For example, it is well known that X11 applications can eaves-
drop on the keyboard input for other applications. Removing the
X11 permission from applications is not a solution, as X11 is still
commonly used by Linux distributions. Fortunately, if the user is
running the Wayland windowing system and the application has
the X11 permission, it cannot eavesdrop on keyboard input for
other applications. Since it is possible to safely run an application
with the X11 permission, we do not consider it a vulnerability.

4 METHODS
This section describes the methods used for answering our research
questions. Figure 3 displays the high-level methodology of our
approach. A key challenge was to compare the Flatpak and Snap
ecosystems directly. Comparing sandbox policy specifications is
meaningless if the subject applications are not comparable, such as
comparing server applications to desktop applications. Therefore,
a set of matching applications between ecosystems is required to
make a comparison. Finally, Flatpak and Snap permissions are not
directly comparable. Therefore, we identified semantic groupings
of permissions that apply to both ecosystems.

4.1 Data Sets
Our analysis considers two data sets: all applications and matching
applications. However, the all applications is not particularly use-
ful for comparison. Flatpak is primarily GUI applications (98.9%),
whereas Snap includes GUI (62.8%), command line, and server ap-
plications. The set of matching applications provides a direct com-
parison of the security posture between the two ecosystems.
Data Collection: To identify all applications available in each store,
we developed a web scraping script using the Python Beautiful-
Soup library [9]. At the time of data retrieval (September 19, 2020),
919 applications were available from the Flathub store, and 2,264

4We note that a Snap application with the home permission can overwrite user-owned
executables (e.g., in ~/bin), which may lead to unconfined execution. However, since
such attacks are user-specific, we do not consider them in this paper.

applications were available from the Snapcraft store. In addition to
the sandbox policy’s package manifest, we also collected metadata,
including application name, application refresh time, application
version, and application category. Apart from the initial data re-
trieval, we also refreshed a set of matching applications for our
longitudinal study within Section 5.2.1 on July 7, 2021.
Policy Extraction: Both Flatpak and Snap define the sandbox pol-
icy (permissions) in the package’s manifest file. Given the open na-
ture of Flathub, we were able to retrieve each application’s manifest
file directly from Flathub’s Github project (https://github.com/flathub).
Due to the closed nature of the Snap Store, retrieving the manifest
file for Snaps was more difficult. For each Snap, we installed the
package to our local machine and extracted the snapcraft.yaml file
from the application’s build directory.

We created Python scripts to parse the three types of manifest
files: JSON and YAML for Flatpak and YAML for Snap. We extracted
the sandbox permissions and application execution command prop-
erty. For Flatpaks, the sandbox permissions are listed as finish-args
(see Figure 1), whereas for Snaps they are listed under the plugs

attribute of each app component (see Figure 2).

4.2 Matching Applications
The set of matching applications approximates the desktop applica-
tions desirable by the Linux community and enables a comparison
between the Flatpak and Snap ecosystems. We first normalized the
application names to perform the matching, filtering out punctu-
ation, special characters, and numbers. Normalization alone iden-
tified 215 matching applications. To increase this set, we used the
application execution commands extracted from the manifest file.
By matching execution commands, we matched an additional 42
applications. While the execution command is a valuable matching
heuristic, it is not sufficient on its own. In fact, only 184 of the exact
application matches also had a match in the execution command.

Finally, we used Python’s FuzzyWuzzy module to calculate the
Levenshtein distance between the remaining normalized applica-
tion names. For example, FuzzyWuzzy identified a match between
“Airtame” (Flatpak) and “Airtame Application” (Snap), which was
not matched by direct string comparison. We conservatively set the
FuzzyWuzzy ratio to 50, which generated false-positive matches.
The list of matches was manually inspected for accuracy. Any un-
matched applications not present in the initial FuzzyWuzzy subset
or previous methods were searched, using the application name, on

https://github.com/flathub

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

Table 1: Permission groupings used by our analysis

Permission Group Description Flatpak Examples Snap Examples
Filesystem Access to user and system files --filesystem=host

--filesystem=home
--filesystem=/path/

home
personal-files

Device Access to devices and peripherals --device=all
--socket=cups

pulseaudio
joystick

Network Network access --share=network network-bind

System IPC Access to system daemons and services --system-talk-name=[name]†

--socket=system-bus
system-observe
network-manager

Session IPC Access to session apps and daemons --talk-name=[name]† gsettings
calendar-service

Graphics Windowing and graphics APIs --device=dri
--share=ipc

wayland
opengl

† [name] includes names such as org.gtk.vfs and org.gtk.vfs.*

the opposing app store, adding 26 matching applications. In total,
we identified 283 matching applications. The full list of matching
applications can be seen in our online appendix.5

4.3 Permission Normalization
Simply having matching applications is insufficient to compare the
Flatpak and Snap ecosystems. We created permission groups, based
on the privilege dimensions defined in Section 3, to coarsely group
the very different types of permissions used by Flatpak and Snap.
Three co-authors reviewed our permission group classification,
each of which has one to two decades of experience using Linux.

4.3.1 Permission Groups. We performed a permission group classi-
fication based on the entire set of permissions used by the Flatpak
and Snap applications in our matching applications dataset. Table 1
lists and describes our six permission groupings as well as several
example permissions for both Flatpak and Snap. While the per-
mission groups roughly correspond to Flatpak’s finish-args types,
there are several notable differences. Specifically, we took into ac-
count the end resource being accessed rather than the mechanism
for access. For example, PulseAudio and CUPS are accessed via
daemons, but they ultimately give access to devices (i.e., speak-
ers, microphones, and printers). Finally, we created the “Graphics”
group (not in Section 3) for windowing and graphics environment
permissions to reduce noise in our comparative analysis. For ex-
ample, X11 requires Flatpak applications to include share=ipc, and
in some cases device=dri, which is technically a device, but also
related to graphics. Snap has a similar set of permissions that may
otherwise be classified as system IPC.

4.3.2 Identifying Privilege Use. Section 5 calculates the dimensions
of privilege granted to applications based on the permission groups.
For each privilege, an application is counted exactly once and cat-
egorized as either no access, fine-grained access, or coarse-grained
access. If an application has at least one coarse-grained permission
in a permission group, the application is counted as coarse-grained
for that privilege. Otherwise, if it has at least one fine-grained per-
mission for a permission group, it is counted as fine-grained for
that privilege. If it has no permissions in a permission group, it is

5https://github.com/wspr-ncsu/linux-app-sandbox/blob/main/data/matching.md

counted as no access for that privilege. Our complete classification
of permissions as fine-grained and coarse-grained is online. 6

Snap policy has three additional complexities that warrant men-
tion. First, only some permissions are granted by default (i.e., -
auto-connect is yes). Section 5 shows both the default privilege
and the privilege if users grant all available permissions. When
determining the default privilege for an application, our analysis
accounts for the auto-connect overrides approved by the Snap Store.
Second, Snap allows the package maintainer to define a different
sandbox policy for each binary executable in the application. This
policy union is needed to compare application-level privilege be-
tween Flatpak and Snap ecosystems. It also represents the fact that
privilege-separated components can either collude or exploit one
another [12]. Therefore, from a threat model perspective, the union
is appropriate. Third, Snap applications with classic confinement
mode can access all resources, counted as coarse-grained for each
permission group.

4.4 Manual Testing of Applications
When assessing RQ3, a subject matter expert tested a set of applica-
tions to understand why package maintainers set some permissions.
The focus is on network and filesystem permissions because they
are the clearest to evaluate manually from a standard desktop. The
goal is to understand the broad permission requirements of ei-
ther filesystem or network access set by the package maintainers.
Therefore, it was not necessary to exercise every code path during
analysis. Instead, our procedure for application testing is as follows.

Initially, the tester reads the application’s description to famil-
iarize themselves with what the application does. The application
is then installed from the defacto Flatpak and Snap stores. Next,
the application is opened, ensuring the same binary entry point for
Flatpak and Snap. Any necessary actions (e.g., account creation)
were followed to get the application to work. Once the application
is running, the exploratory phase of the main menu or the menu
bar begins, selecting each feature with the intent of either accessing
the user’s filesystem or requesting network access. Generally, the
need for filesystem or network access is a clear path for GUI-based
applications. A common need for filesystem access is to load a file,

6https://github.com/wspr-ncsu/linux-app-sandbox/blob/main/data/permissions.md

https://github.com/wspr-ncsu/linux-app-sandbox/blob/main/data/matching.md
https://github.com/wspr-ncsu/linux-app-sandbox/blob/main/data/permissions.md

A Study of Application Sandbox Policies in Linux SACMAT ’22, June 8–10, 2022, New York, NY, USA

such as saving an output file or uploading a custom file to the ap-
plication. Common network access features include downloading
new games or uploading data to the network.

If an application contains a permission, but no feature is found
within the application to need the permission, the application is
considered over-privileged. Multiple steps follow to confirm over-
privilege. First, the tester searches online for documentation about
the application, looking for features requiring the specific permis-
sion. If no information is found online regarding how to invoke the
need for such permission, it was then removed from the application
and re-tested. During the re-test, the tester checked the application
for no apparent functionality lost. The functionality after removing
the permission was confirmed to match the opposing platform’s
application that was released without the specific permission. Sig-
nificant time was spent on each application before classifying it as
over-privileged, as the classification is not taken lightly.

In contrast, if we found a function broken due to the lack of
permission, we considered this application to be under-privileged.
Broken functionality generally results in an error message. If the
application was difficult to use due to the lack of a permission (e.g.,
transferring a file into the sandbox to access due to a missing file
system permission), compared to the application on the opposing
platform using the specific permission. We then considered the
application with the missing permission to be under-privileged.

5 RESULTS
Here, we use the matching applications dataset and the normalized
permissions to compare the Flatpak and Snap ecosystems. We start
by understanding the policy features in use, then approximate least
privilege, and end with general policy correctness and security.

5.1 Policy Features in Use
We begin addressing RQ1What access control policy features do
package maintainers use?
Finding 1: Applications use a large number of policy features. When
considering the all applications dataset, we found that the Flatpak
ecosystem uses 162 unique permissions, while the Snap ecosystem
uses 142 unique permissions. Several factors can explain the differ-
ences in permission count between the systems. Flatpak supports
several runtimes, such as GNOME, KDE, and Freedesktop, each
having its own portal permissions. Note that for Flatpak, we do
not separately count permissions to specific file paths (e.g., /hom-
e/user/.app/.config), though we separately count defined XDG
file permissions (e.g., filesystem=xdg-download). Many policy fea-
tures enable fine-grained access control at the potential cost of
complicated policy specification and maintainer burden.

On average, Snaps use 9.29 permissions in matching applications
while Flatpaks use 7.03 permissions. Therefore, demonstrating the
size of a “typical” policy is non-trivial, and Snaps tend to use more
permissions than Flatpaks for roughly equivalent policies. 7 Next,
we consider how policies vary among applications.
Finding 2: Despite the complex menu of permissions, few are fre-
quently used. Of matching applications, 50.0% of Flatpaks only use
a subset of the 11 most common permissions, while 55.2% of Snaps
7We exclude classical confinement apps from this analysis, as these apps do not need
to declare a permission for an activity.

0 5 10 15 20 25 30 35
Ranked Access Permission

0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f M
at

ch
in

g
Ap

ps
 U

sin
g

Pe
rm

iss
io

n

network, 80%
home, 78%

device=all, 23% 30, ~2%

Flatpak
Snap

Figure 4: RankedAccess Permission Frequency for 255Match-
ing Apps (Excluding Snap Classic Confinement Apps)

only use a subset of the 16 most common permissions. Figure 4
displays the commonly occurring access permissions across each
platform and how many applications use them. The x-axis displays
the rank of permissions for matching Flatpak and Snap applica-
tions, with the most common permissions on the left. Equivalent
permissions across the two platforms may be ranked differently. For
example, the most used permission across matching applications
in Flatpak is share=ipc, while in Snap, it is the desktop permission.
Each highly ranked permission is relatively coarse-grained, includ-
ing entire home filesystem access, network access, all devices, and
host filesystem access, which satisfy most of the confinement re-
quirements for applications. Both of the platforms start to taper
off after the 16th permission. We next investigate how coarse- and
fine-grained permissions use used.

5.2 Approximating Least Privilege
In this section we investigate RQ 2: How often do package main-
tainers attempt to approximate least-privilege?
Finding 3:With the exception of filesystem, package maintainers use
fine-grained permissions when available. Figure 5 displays whether
applications have coarse-grained access, fine-grained access, or no
access to a particular permission group. Only the filesystem, device,
system IPC, session IPC, and graphic groups offer fine-grained
permissions. Network permissions are only coarse-grained on both
platforms, and graphics permissions are only fine-grained, so we
do not further discuss these categories. We distinguish between the
requested and default (i.e., auto-connect) for Snap permissions.

Both platforms offer a significant amount of alternatives to
coarse-grained permissions in terms of IPC. For Flatpak, 7% of
matching apps used the fine-grained system IPC, and zero apps
used the coarse-grained system IPC permissions. We see 5% of apps
using fine-grained system IPC permissions compared to the 10%
of apps using coarse-grained system IPC permissions for the Snap
default settings and 21% of apps requesting fine-grained IPC per-
missions. For session IPC permissions, 42% of matching Flatpak

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

Filesystem Network Device System IPC Session IPC Graphics
0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f T
ot

al

Flatpak NA
Flatpak FA
Flatpak CA

Snap Default NA
Snap Default FA
Snap Default CA

Snap Request NA
Snap Request FA
Snap Request CA

Figure 5: Breakdown of Matching Applications for No Ac-
cess (NA), Fine-Grain Access (FA), and Coarse-Grain Access
(CA) Permissions. Snap “Default” auto-connect: yes and “Re-
quest”all specified permissions.

apps use fine-grained permissions compared to the 2% using coarse-
grained permissions. For Snap, we saw five times as many apps
using fine-grained system IPC permissions compared to coarse-
grained system IPC permissions.

Snap package maintainers use a filesystem access approach that
allows for either no access, home access, or host access. While a
personal-files permission is available for specific file access, it
requires approval and is primarily for reading hidden files. Only
one Snap from the matching applications dataset uses the personal-
-files permission. On the other hand, Flatpak offers finer-grained
options through portals or specific folder locations (e.g., xdg-doc-
uments). Of the matching applications, 9.9% of Snap applications
and 27.6% of Flatpak applications have host filesystem permissions.
Consequently, this observation debunks speculation that the ma-
jority of applications have host filesystem access [17]. The likely
cause of the difference between Flatpak and Snap is the vetting
process for the classical confinement in Snap. For Flatpak, 34% of
matching apps use fine-grained filesystem permissions, while 43%
of matching apps use coarse-grained filesystem permissions.

For device permissions, Snap provides fine-grained permissions
to devices (e.g., for joysticks, cameras, and other /dev devices),
while Flatpak only provides a coarse-grained permission (e.g., dev-
ice=all) and limited fine-grained permissions. Despite the limited
permissions in Flatpak, we still see 36% of matching Flatpak apps
using fine-grained permissions compared to 25% with coarse-grain
access, demonstrating that access to /dev is not as common on
desktop applications. For Snap, we saw on average six times as
many matching applications using fine-grained device permissions
compared to coarse-grained device permissions.

When considering filesystem, device, and IPC permissions for
Flatpak, on average, 1.7 times as many apps are using fine-grained
permissions compared to coarse-grained permissions. For Snap,
when looking at the device and IPC permissions, nearly 3.1 times
as many apps use fine-grained permissions over coarse-grained
permissions. These results suggest package maintainers use least-
privilege policies that require fine-grained permissions.

Filesystem Network Device System IPC Session IPC Graphics
0%

20%

40%

60%

80%

100%

Pe
rc

en
t o

f T
ot

al
 C

ha
ng

ed

Flatpak Removed
Flatpak Both
Flatpak Added

Snap Removed
Snap Both
Snap Added

Figure 6: Evolved Sandbox Permissions of Matching Applica-
tions from September 2020 to July 2021

5.2.1 Policy Changes over Time. To understand how the ecosystem
is changing over time, we first assessed how permissions in the
same matching applications in September 2020 changed over a
ten-month period (September 2020 to July 2021).
Finding 4: On average, 30.22% of applications changed their policy
over a ten-month period. Demonstrating the ecosystems are still in
flux and evolving. Of the unique permissions added tomatching Flat-
pak applications over the ten months, 90.20% were fine-grained. For
matching Snap applications, 90.91% of the added permissions were
fine-grained. Broadly, when an existing permission group is modi-
fied, package maintainers either add new fine-grained permissions
or change coarse-grained permission to fine-grained permissions.

Figure 6 displays the breakdown of categories and how package
maintainers changed the permissions in each for Flatpak and Snap.
The Added portion represents applications that only added per-
missions. The Removed portion represents applications that only
removed permissions. The Both portion represents applications
that added permissions and removed permissions. The following
paragraphs highlight examples of these changes.
Filesystem: For filesystem access, 27 of the 30 applications that
added filesystem permissions for Flatpak were fine-grained. The
most common filesystem access removal was of the filesystem=ho-

me permission. For example, the Signal Desktop private messenger
application in Flathub was originally granted full home access. The
package maintainer removed the filesystem=home permission and
replaced it with the safer filesystem=xdg-* paths, demonstrating a
sandbox policy improvement and a transition towards fine-grain
policies. For Snap, two applications added the home plug, two re-
moved the home plug, and one transitioned from classic to strict.
Network: Flatpak introduced network access, while Snap mixed
between adding and removing network access. Seven Flatpak appli-
cations introduced the network permission. The Snap Skype applica-
tion transitioned from classic to strict confinement, still maintaining
network access, demonstrating stricter access privileges.
Device: Flatpak package maintainers introduced minor changes

A Study of Application Sandbox Policies in Linux SACMAT ’22, June 8–10, 2022, New York, NY, USA

with device permissions. Two added device=all, two added de-

vice=shm, and two removed device=shm. In Snap, 40 applications
transitioned from the pulseaudio plug to the audio-playback plug,
likely addresing security issues inherited with PulseAudio [33].
System IPC: Only two Flatpak applications changed system IPC ac-
cess. One added socket=system-bus permission, a highly permissive
system IPC permission. The other added a fine-grained permission
for the network monitor portal. For Snap, most of the applications
added the fine-grained network-manager-observe plug.
Session IPC: Flatpak applications saw the most significant addi-
tion of virtual file system portal access, which aligns with XDG
directories’ transition. The change demonstrates sandbox policy
improvement for applications and does not open permissive holes
in the sandbox policy. The two most common changes for Snap
were the addition of the screen-inhibit-control or the gsettings

plug, both of which are fine-grain permissions.
Graphics: Graphics saw a unique split of how Flatpak package
maintainers handled permissions. Half of the applications were
split between either adding Wayland support and removing X11 or
adding X11 and removing Wayland. We expect to see applications
experimenting with Wayland support before making complete tran-
sitions away from X11. For Snap, 23 applications added Wayland
support, and 22 applications added OpenGL support to access the
system GPU, as most were gaming applications.

5.2.2 Date of Last Package Update. To contextualize our finding
that 30.22% of applications changing their policy over the analysis
period, we also investigated what proportion of packages that up-
dates regardless of if policy change. Having up-to-date software
with security patches is an essential security measure.

Overall, we found that packages are more actively maintained
in Flatpak than Snap. In total applications, 21.6% of Flatpak applica-
tions and 49.1% of Snap applications had not been updated since
December 2020 (as of July 2021). For matching applications, 82.7%
of Flatpak and 75.8% of Snap application packages were updated
in 2021. We also note packages may or may not be “up-to-date”
relative to the upstream project, as visibility is unavailable.

5.3 Policy Correctness and Security
In this subsection, we address RQ3 Do package maintainers specify
correct and secure policy?

5.3.1 Permitting Sandbox Escapes.

Finding 5: 41.7% of matching Flatpak applications can escape the
sandbox, while only 9.9% of matching Snap applications run uncon-
fined. As mentioned in Section 3, clear sandbox escapes can be
created through policy weakness. For Flatpak, the ability to tam-
per with the sandbox can come when granted either home or host
filesystem access. Of the matching applications, 14.1% request home
filesystem access and 27.6% request host filesystem access. These
two permissions, by default, allow the ability to write to hidden
files (e.g., the user’s ~/.bashrc), allowing the injection of command
that would execute outside of the sandbox. A secondary example
is to override the user’s policy within the user’s home directory,
allowing for privilege escalation, but we did not find any instances
within matching Flatpak applications. Note that package maintain-
ers can define read-only permissions for filesystem access. However,

300 250 200 150 100 50 0 50 100
Application Count

Filesystem

Network

Device

Session IPC

System IPC

Graphics

Neither Access Both Access Snap Only Flatpak Only

Figure 7: Default Access Permissions for 283 Matching Apps

only one matching application requests read-only home, and only
three matching applications request ready-only host.

In contrast, Snaps cannot technically escape the sandbox. Recall
that Snap’s home plug does not allow writing to hidden files in
the user’s home directory. However, 9.9% of matching Snaps have
classic confinement which does not run in a sandbox.

5.3.2 Inconsistent Policy. We now investigate how matching ap-
plications differ in their use of broad categories of permissions:
filesystem, network, device, session IPC, system IPC, and graph-
ics. Because we consider broad privilege, we capture clear func-
tional differences between applications, not minor differences in
the specificity of a permission. For example, applications are de-
signed to either use the filesystem or not. Permission errors can be
over-privilege (unneeded permission was added) or under-privilege
(needed permission was not provided). Figure 7 depicts the pro-
portion of matching apps that are consistent (left of the line) or
inconsistent (right of the line) in each permission group. Note, these
are the default permissions, the auto-connect aspect of Snap.
Finding 6:We found approximately 75% of matching applications
declare inconsistent permission groups. We note that this finding
counts apps, not individual permission group differences, which
is greater. The graphics permission group is negligible due to the
GUI aspect of matching applications. The difference for system IPC
comes from the classical confinement applications in Snap when
Flatpak does not request any system IPC access.

The session IPC permission group had the greatest number of
inconsistencies, with 82 (29%) differing applications, the majority
of which, 68 (24%), were with Snap applications only accessing the
session IPC. This inconsistency can be misleading, as the difference
resulted from Snaps having the gsettings plug. Flatpak automati-
cally allows access to gsettings without a specific permission.

The next most significant difference is the device permission
group, which contained 72 (25%) differing applications. PulseAudio
is the driving factor for differences in device access, in which 36
Flatpak applications use PulseAudio. Given that our analysis only
considers default permissions for Snap (autoconnect: yes), the

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

Table 2: Under/Over-Privilege Analysis

Under-privilege Over-privilege
Flatpak Snap Flatpak Snap

Filesystem 10 7 2 13
Network 9 0 5 37

differences are not surprising, since PulseAudio is not auto-conne-
ct due to security concerns [33]. When considering all requested
permissions for Snap, we see a flip in PulseAudio requests, with 32
apps from Snap requesting PulseAudio when Flatpak does not.

Finally, filesystem and network access permissions represent cru-
cial differences that define the application’s functionality. For Snap,
47 applications declared network permissions undeclared by the
matching Flatpak, while only 9 Flatpaks had network permissions
undeclared by the matching Snap. In total, 56 (20%) applications
contain differing network permissions. In the filesystem permission
group, we found a total of 33 (12%) inconsistent applications, with
23 Snap applications requesting filesystem access and 10 Flatpak
applications requesting filesystem access.

5.3.3 Manual Runtime Analysis. This subsection presents our find-
ings from amanual analysis on 33 applications with differing filesys-
tem permissions and 56 applications with differing network permis-
sions. We excluded one application from the filesystem results and
five applications from the network results after determining either
a relevant binary was not present or would not execute correctly.

We focus on network and filesystem permissions because they
are the clearest to evaluate manually from a standard desktop. We
evaluated permission use in the broadest possible terms: any at-
tempted or confirmed use of the filesystem or network activity was
sufficient to determine if an application should have or not have
permission. If a matching Flatpak and Snap make the same error, it
would not be included in this analysis. As a result, these findings
are a conservative lower bound on permission errors.
Finding 7: Permission inconsistencies across matching applications
suggest the confusion of application functionality. The below results
demonstrate how inconsistencies in permissions requests across
matching applications suggest that confusion in defining policy is
present. Table 2 reports our findings from the manual analysis.
Filesystem Analysis: Given the complexity of these permission
systems, combined with the near-ubiquity of filesystem use, it is
perhaps unsurprising to find some over-privileged apps. That said,
the overall base rate of 5.2% filesystem over-privilege is relatively
low, though it is a lower bound by construction.

A case study of filesystem over-privilege is the game Mr. Rescue,
an arcade-style fire fighting game. The Snap app requested the home
permission, but the Flatpak did not. In an exhaustive examination of
the interface, we saw no indication of filesystem access. To further
validate, we manually removed the home plug from the Snap and
retested it. We found the game fully functional, including score
history, indicating over-privilege.

While over-privilege may be expected to preserve functionality
when permission needs are unclear, we found it surprising that
more inconsistent applications had under-privileged filesystem per-
missions. Under-privilege does not directly indicate a compromise
risk, though it does present a loss of functionality. Frustrated users
could abandon the relevant app or seek it out from a less secure

source (e.g., a non-sandboxed repository or an unofficial source).
An example of filesystem under-privilege is the NordPass Pass-

word Manager application on Flatpak. The Flatpak requested no
filesystem access, while the Snap requested the home access permis-
sion. Within the application, an import functionality prompts the
user to "browse for a CSV file," opening a file chooser dialog with
only visibility within the Flatpak sandbox. While the application
was functional, users would be required to manually move the files
to the sandbox environment for import. Perhaps the most secure
method, but using the application as intended is hampered.
Network Analysis: Network over-privilege was more common
than filesystem over-privilege in both ecosystems, though Snaps
were more likely to be overprivileged by a factor of over 5. To mea-
sure over-privilege, if we did not find an apparent need for network
access in an app, we manually removed the network permission to
ensure no functionality relied on network access.

Of the 37 instances of Snap over-privilege for network access, 15
came from KDE applications, all requesting the same permissions.
We surmise this indicates one or more package maintainers for KDE
apps used a one-size-fits-all approach to policy selection. Of our
inconsistent apps, only Flatpaks failed to request needed network
permission. An example of network underprivilege is the KBlocks
games, where users can request new game themes.When requesting
game themes, a Flatpak user will see an error indicating it could
not reach a web server. Snap users can successfully request game
themes, indicating the corresponding Flatpak is underprivileged.

In summary, we expected that over-privileged apps would be
dominant, but we found an almost equal rate of under- and over-
privilege across all apps. There was a clear trend that Snaps tend
to be overprivileged, and Flatpaks tend to be underprivileged. In
future work, researchers should investigate the root causes of this
discrepancy and if it originated in differing community norms.

6 THREATS TO VALIDITY
Threats to Internal Validity: While we automated our process-
ing and characterization of policy, our study had several manual
aspects. First, three coauthors with extensive Linux experience re-
viewed and discussed our mapping of permissions. However, errors
in the mapping could impact the resulting characterization and
comparison. Second, assessing RQ3 relied on manually testing ap-
plications, potentially allowing for a missed functionality within
the application that required specific access permissions. We consid-
ered using static or dynamic analysis tools to determine application
privilege needs. Unlike prior work on Android permission analysis,
static analysis was impractical because Flatpaks and Snaps access
resources in various ways and are written in multiple languages
and runtimes. Dynamic analysis requires automatically creating
test input generation and monitoring, which is an open challenge.
Static or dynamic analysis needs customization per application,
leaving manual analysis as our most reliable method.

When classifying under-privilege, we assumed that users use
the functionality that is broken by the missing permission. In some
cases, we classified applications as under-privileged even though
there was technically a way to work around the lack of privilege
(e.g., manually moving a file to a location). However, we decided
that the application was underprivileged if the lack of privilege

A Study of Application Sandbox Policies in Linux SACMAT ’22, June 8–10, 2022, New York, NY, USA

resulted in a significant negative impact on usability.
Threats to External Validity: While we downloaded all of the
Flatpaks and Snaps from Flathub and the Snap Store, most of our
analysis was performed on a much smaller set of matching ap-
plications. The analysis results for these matching applications
may not extend to the broader ecosystem, particularly the IoT and
server applications included in the Snap Store. We also only con-
sidered the Flathub repository for Flatpaks. While this is the de
facto repository for Flatpak, there are other repositories, including
those maintained by Fedora and Endless OS. Package maintainers
for these other repositories may assign different sandbox policies.

7 IMPROVING ACCESS CONTROL
The additional security provided by the Flatpak and Snap sand-
boxes is highly dependent on the security policy defined by the
package maintainer. This section reflects on different causes for
weak sandbox policy and strategies for improvement.
Package Maintainer: The first cause for weak policy is the pack-
age maintainer. As shown in Finding 6, broad privilege dimensions
for filesystem access or network access varied significantly for
matching applications within Flatpak and Snap. This finding sug-
gests that package maintainers are not always sure what policy
to specify. We believe that package maintainers would be greatly
aided by tools that automatically suggest initial fine-grained poli-
cies for applications. Some tooling does already exist. For example,
Snap’s devmode is similar to SELinux’s auditallow, which logs policy
denials rather than enforcing them. However, runtime testing has
inherent limitations. Alternatively, static analysis tools can sug-
gest policies based on methods called by the application. Creating
such tools is nontrivial. Ideally, they should operate on package
binaries rather than source code, as source code is not available for
all applications. Applications are written in various languages and
runtimes, and resources can be accessed multiple ways (e.g., Unix
sockets vs. D-Bus), requiring data flow analysis.
App Developer: The second cause for weak policy is the app de-
veloper. When the package maintainer is not the app developer,
they are limited in what policy can be specified without breaking
app functionality. This intuition is supported by Finding 3, which
shows that package maintainers use fine-grained permission when
available, but coarse-grained permissions largely dominate file sys-
tem access. We hypothesize that many applications could eliminate
their need for file system permissions by adopting the XDG File
Chooser portal API. However, this requires changes to the applica-
tion. Future work should consider tools to automate this process.
App Framework: The third cause for weak policy is the app frame-
work. Making changes to app frameworks often requires significant
community coordination. For example, Electron is used by a num-
ber of popular Linux applications (e.g., Slack). The Electron GitHub
issue tracker has a five-year discussion about using a desktop-
aware file picker.8 Ultimately, changing app frameworks to use
more sandbox-friendly APIs will have a significant positive impact
for Flatpaks and Snaps, though some app rewriting tools may still
be required to port apps to the correct APIs.
System Architecture: The fourth cause for weak policy is system
architecture. Some core system features (e.g., audio) were not built

8https://github.com/electron/electron/issues/2911

with fine-grained app permissions in mind. In the case of audio, the
system architecture change from PulseAudio to Pipewire enables
more least-privilege policies. As shown in Finding 4, once Snap
released the audio-playback plug, package maintainers of appli-
cations started to transition. However, other system architecture
features are still not compatible. For example, the Gnome BOXES
Flatpak does not support USB device redirection9 and interacting
with SANE is a challenge10 for Flatpak document scanners.

8 RELATEDWORK
Application sandboxing is a well-researched topic. Wahbe et al. [41]
first introduced the concept of sandboxing in the context of soft-
ware fault isolation. Other sandboxing methods include filtering
system calls, e.g., Janus [21], Conch [3], Systrace [32], as well as
other types of confinement [18, 20, 24, 31, 46]. Sandboxing using
permissions or rules is common [2], ideally following the principle
of least privilege [35] only to allow functionality needed by the ap-
plication. Most Linux access control models use the Linux Security
Modules [28] framework. Of note is AppArmor, designed initially
to confine server applications [13, 27] which frequently have more
predictable access control needs than end-user applications.

Android is the most widely studied ecosystem of application
sandbox policy. Barrera et al. [6] performed the first broad analysis
of Android permissions, using self-organizing maps to character-
ize 1,100 Android applications. Stowaway [14] first studied over-
privilege in Android applications, finding one-third of their sample
of 940 applications was over-privileged. Many subsequent tools
were proposed to study over-privilege in Android [5, 7, 38, 43, 44].
Most recently, Droidtector [45] found 48% of sampled applications
to be over-privileged. This over-privilege is likely enabled by end-
users inability to comprehend the meaning of permissions [16].

Traditional Linux package managers such as apt and yum do
not sandbox applications. Cappos et al. [11] discovered that by
exploiting vulnerabilities in popular package managers, attackers
with mirrors to distributions could crash hundreds to thousands
of clients. Linux server applications are frequently distributed as
Docker containers. Shu et al. [36] studied over 356,000 community-
contributed images on Docker Hub, finding over 180 vulnerabilities
and images that had not been updated for hundreds of days.

Finally, two recent academic studies have touched upon Flatpaks.
Lauren et al. [25] reviewed various application-level sandboxing
techniques, mainly oriented towards implementation mechanisms,
restricting file system access, and graphical interface isolation. Their
experiments consisted of 10 different sandboxing techniques and
only briefly focused on Flatpak. More recently, Legay et al. [26]
surveyed 170 Linux users, gauging their perception of package
freshness. They found 21% of their participants used Flatpak or
Snap to regularly install end-user open-source software, 22% for
development tools, and 29% for programming language libraries.

9 CONCLUSION
Desktop operating systems are transitioning to the app-based se-
curity model that is commonplace in mobile platforms. For Linux,
this transition coincides with distribution-independent methods of

9https://gitlab.gnome.org/GNOME/gnome-boxes/-/issues/236
10https://gitlab.gnome.org/GNOME/simple-scan/-/issues/21

https://github.com/electron/electron/issues/2911
https://gitlab.gnome.org/GNOME/gnome-boxes/-/issues/236
https://gitlab.gnome.org/GNOME/simple-scan/-/issues/21

SACMAT ’22, June 8–10, 2022, New York, NY, USA Dunlap et al.

distributing software: Flatpak and Snap. Linux desktop security has
the potential to benefit significantly from this initiative, if packages
have correct and secure policies. Our study of 283 applications that
appear in both Flatpak and Snap ecosystems show that while the
transition is already beneficial, there is room for greater improve-
ment. The majority of Snaps (90.1%) and Flatpaks (58.3%) specify
policies to prevent sandbox escapes, and package maintainers in
most areas use fine-grained permissions. However, defining policy
is still difficult and error-prone, though maintainers are showing
positive progress in moving to finer-grained policies. In reporting
these findings, we hope to inspire future research to continue to
enhance the security of these ecosystems.
Acknowledgements: This work was supported in part by NSF
grant CNS-1946273. Any findings and opinions expressed in this
material are those of the authors and do not necessarily reflect the
views of the funding agencies.

REFERENCES
[1] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li.

2018. Precise Android API Protection Mapping Derivation and Reasoning. In
Proceedings of the ACM Conference on Computer and Communications Security.

[2] Faisal Al Ameiri and Khaled Salah. 2011. Evaluation of popular application
sandboxing. In Proceedings of the International Conference for Internet Technology
and Secured Transactions. 358–362.

[3] A. Alexandrov, P. Kmiec, and K. Schauser. 1998. Consh: Confined Execution
Environment for Internet Computations. (1998).

[4] J. P. Anderson. 1972. Computer Security Technology Planning Study. ESDTR-73-
51. Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA. (Also
available as Vol. I, DITCAD-758206. Vol. II DITCAD-772806)..

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[6] David Barrera, H. G unes Kayacik, Paul C. van Oorshot, and Anil Somayaji. 2010.
A Methodology for Empirical Analysis of Permission-Based Security Models and
its Application to Android. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

[7] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.
Automatically Securing Permission-based Software by Reducing the Attack Sur-
face: An Application to Android. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). 274–277.

[8] Jon Brodkin. 2016. Linux’s RPM/deb split could be replaced by Flatpak vs. snap.
https://arstechnica.com/information-technology/2016/06/here-comes-flatpak-
a-competitor-to-ubuntus-cross-platform-linux-apps/

[9] BS4 2021. Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/
[10] Bubblewrap 2021. Bubblewrap. https://github.com/containers/bubblewrap.
[11] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. 2008. A look in

the mirror: attacks on package managers. In Proceedings of the ACM conference
on Computer and Communications Security (CCS).

[12] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evaluation
of the Google Chrome Extension Security Architecture. In Proceedings of the
USENIX Security Symposium.

[13] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and
Virgil Gligor. 2000. SubDomain: Parsimonious Server Security. In Proceedings of
the USENIX conference on System administration (LISA) (New Orleans, Louisiana).
USENIX Association, 355–368.

[14] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

[15] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdata Akhawe, and
David Wagner. 2012. How to Ask for Permission. In Proceedings of the USENIX
Workshop on Hot Topics in Security (HotSec).

[16] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android Permissions: User Attention, Comprehension and
Behavior. In Proceedings of the Symposium on Usable Privacy and Security.

[17] Flatkill 2018. Flatpak - a security nightmare. https://flatkill.org/
[18] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. 2008. The Evolution of

System-Call Monitoring. In Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC).

[19] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2005. Automatic Placement of
Authorization Hooks in the Linux Security Modules Framework. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS).

[20] T. Garfinkel, B. Pfaff, and M. Rosenblum. 2004. Ostia: A Delegating Architecture
for Secure System Call Interposition. In Proceedings of the ISOC Network and
Distributed Systems Security Symposium (NDSS).

[21] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996. A secure
environment for untrusted helper applications confining the Wily Hacker. In
Proceedings of the on USENIX Security Symposium.

[22] Flatpak Issue. 2020. Home permissions too relaxed and give full permission escala-
tion #3637. https://github.com/flatpak/flatpak/issues/3637

[23] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency Analysis
of Authorization Hook Placement in the Linux Security Modules Framework.
Transactions on Information and System Security 7, 2 (May 2004), 175–205.

[24] K. Jain and R. Sekar. 2000. User-Level Infrastructure for System Call Interposition:
A Platform for Intrusion Detection and Confinement. In Proceedings of the ISOC
Network and Distributed Systems Security Symposium (NDSS).

[25] Samuel Laurén, Sampsa Rauti, and Ville Leppänen. 2017. A Survey on Applica-
tion Sandboxing Techniques. In Proceedings of the International Conference on
Computer Systems and Technologies.

[26] Damien Legay, Alexandre Decan, and Tom Mens. 2020. On Package Freshness
in Linux Distributions. CoRR abs/2007.16123 (2020). arXiv:2007.16123 https:
//arxiv.org/abs/2007.16123

[27] Bill McCarty. 2004. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly
Media, Inc.

[28] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux security
modules: General security support for the linux kernel. In USENIX Security
Symposium. ACM Berkeley, CA, 17–31.

[29] John Paul. 2016. Is Ubuntu’s Snap Packaging Really Secure? https://itsfoss.com/
snap-package-securrity-issue/

[30] Portal Documentation 2021. Portal Documentation. https://flatpak.github.io/xdg-
desktop-portal/portal-docs.html.

[31] Vassilis Prevelakis and Diomidis Spinellis. 2001. Sandboxing Applications. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference.

[32] Niels Provos. 2003. Improving host security with system call policies. In Proceed-
ings of the USENIX Security Symposium.

[33] PulseAudio. 2016. Access Control. https://www.freedesktop.org/wiki/Software/
PulseAudio/Documentation/Developer/AccessControl/.

[34] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, He-
len J. Wang, and Crispin Cowan. 2012. User-Driven Access Control: Rethinking
Permission Granting in Modern Operating Systems. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P).

[35] Jerry Saltzer and Mike Schroeder. 1975. The Protection of Information in Com-
puter Systems. Proc. IEEE 63, 9 (Sept. 1975).

[36] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In Proceedings of the ACM on Conference on Data and Application
Security and Privacy (CODASPY).

[37] Snapcraft. 2021. Supported Interfaces. https://snapcraf t.io/docs/supported-
interfaces.

[38] Vincent F. Taylor and Ivan Martinovic. 2016. SecuRank: Starving Permission-
Hungry Apps Using Contextual Permission Analysis. In Proceedings of the ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM).

[39] Ubuntu 20.04 LTS Release Notes 2020. FocalFossa/ReleaseNotes - Ubuntu Wiki.
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes

[40] Steven J. Vaughan-Nichols. 2019. The future of Linux desktop application delivery
is Flatpak and Snap. https://www.zdnet.com/article/the-future-of - linux-
desktop-application-delivery-is-flatpak-and-snap/

[41] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles.

[42] Jack Wallen. 2020. Why snap and flatpak are so important to Linux. https://www.
techrepublic.com/article/why-snap-and-flatpak-are-so-important-to-linux/

[43] Yang Wang, Jun Zheng, Chen Sun, and Srinivas Mukkamala. 2013. Quantitative
Security Risk Assessment of Android Permissions and Applications. In Data and
Applications Security and Privacy XXVII. Springer.

[44] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012. Per-
mission evolution in the Android ecosystem. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC).

[45] Sha Wu and Jiajia Liu. 2019. Overprivileged Permission Detection for Android
Applications. In Proceedings of the IEEE International Conference on Communica-
tions.

[46] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native client:
A sandbox for portable, untrusted x86 native code. In Proceedings of the IEEE
Symposium on Security and Privacy.

[47] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for Static
Analysis of Authorization Hook Placement. In Proceedings of the USENIX Security
Symposium.

https://arstechnica.com/information-technology/2016/06/here-comes-flatpak-a-competitor-to-ubuntus-cross-platform-linux-apps/
https://arstechnica.com/information-technology/2016/06/here-comes-flatpak-a-competitor-to-ubuntus-cross-platform-linux-apps/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/containers/bubblewrap
https://flatkill.org/
https://github.com/flatpak/flatpak/issues/3637
https://arxiv.org/abs/2007.16123
https://arxiv.org/abs/2007.16123
https://arxiv.org/abs/2007.16123
https://itsfoss.com/snap-package-securrity-issue/
https://itsfoss.com/snap-package-securrity-issue/
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/AccessControl/
https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/AccessControl/
https://snapcraft.io/docs/supported-interfaces
https://snapcraft.io/docs/supported-interfaces
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes
https://www.zdnet.com/article/the-future-of-linux-desktop-application-delivery-is-flatpak-and-snap/
https://www.zdnet.com/article/the-future-of-linux-desktop-application-delivery-is-flatpak-and-snap/
https://www.techrepublic.com/article/why-snap-and-flatpak-are-so-important-to-linux/
https://www.techrepublic.com/article/why-snap-and-flatpak-are-so-important-to-linux/

	Abstract
	1 Introduction
	2 Background
	2.1 Sandbox Enforcement
	2.2 Sandbox Policy

	3 Threat Model and Analysis Goals
	4 Methods
	4.1 Data Sets
	4.2 Matching Applications
	4.3 Permission Normalization
	4.4 Manual Testing of Applications

	5 Results
	5.1 Policy Features in Use
	5.2 Approximating Least Privilege
	5.3 Policy Correctness and Security

	6 Threats to Validity
	7 Improving Access Control
	8 Related Work
	9 Conclusion
	References

