Defending Users Against Smartphone Apps:
Techniques and Future Directions

William Enck

North Carolina State University
enck@cs.ncsu.edu

Abstract. Smartphone security research has become very popular in
response to the rapid, worldwide adoption of new platforms such as An-
droid and iOS. Smartphones are characterized by their ability to run
third-party applications, and Android and iOS take this concept to the
extreme, offering hundreds of thousands of “apps” through application
markets. In response, smartphone security research has focused on pro-
tecting users from apps. In this paper, we discuss the current state of
smartphone research, including efforts in designing new OS protection
mechanisms, as well as performing security analysis of real apps. We of-
fer insight into what works, what has clear limitations, and promising
directions for future research.

Keywords: Smartphone security

1 Introduction

Smartphones are a widely popular and growing space of computing technology.
In Q2 2011, over 107 million smartphones were sold worldwide, accounting for
25% of mobile devices [34]. Smartphones provide an ultra-portable interface
to the Internet and the computational abilities to make it meaningful. Using
environment sensors such as GPS, cameras, and accelerometers, they enhance
everyday tasks with the wealth of information available from the Internet.

Fundamental to smartphones are applications, colloquially known as “apps.”
There were not many apps available for early smartphones, and hence adoption
was slow. In 2008, a perfect storm emerged: 3G connectivity finally became wide-
spread, handset technology provided “large” touch-screens and useful sensors
such as GPS and accelerometers, and the first application market, Apple’s App
Store, was created. While all of these factors were crucial, the application market
played potentially the most important role. There is a strong correlation, if not
causation, between the number of applications in Apple’s App Store and Google’s
Android Market and the rising dominance of iOS and Android.

Warnings of smartphone malware were early and succinct. In 2004, long be-
fore smartphones gained widespread popularity, Dagon et al. [19] and Guo et
al. [37] discussed the dangers of enhancing cellular phones with network and
computational power. These dangers derive from the very concept of a “smart”
phone. Users have come to trust their cellular phones, carrying them day and

night, and using them for personal and intimate conversations. Increasing code
functionality and diversifying its origin results in misplaced trust. It enables
eavesdropping and privacy violations. As we place more information and re-
liance on smartphones, they become targets for information and identify theft,
as well as denial of service attacks (e.g., battery exhaustion). Furthermore, their
connection to telecommunications networks opens potential for emergency call
center DDoS, voice spam, and other attacks on the network.

The initial smartphone security threats still exist, but smartphone malware
surveys [56, 30] have reported trends that help focus attention. Smartphone mal-
ware is comprised primarily of Trojans, often designed to exfiltrate user infor-
mation or use premium rate cellular services (e.g., SMS). That is, smartphone
malware targets the user. Hence, this paper discusses available and proposed de-
fenses for the user against apps they choose to install. We focus on both malware
and grayware (i.e., dangerous functionality without provable malicious intent).

Current smartphone platforms have two promising characteristics not yet
common on PCs. First, protection policies isolated or sandbox applications by
default. Second, applications are frequently distributed via application markets,
providing centralized software management. To date, security certification has
only played a small role [43]; however, so called “kill switches” have proved
to be a valuable means of cleaning up affected devices. Regardless of current
implementations, opportunities exist to enhance the security of future markets.

In this paper, we survey research proposals for enhancing smartphone secu-
rity. We classify existing research into two categories: protection systems, and
application analysis. We overview proposals to enhance the existing smartphone
protection systems, discussing their benefits and limitations. We then consider
techniques for application analysis and their potential use in market-based se-
curity certification. In both areas, our goal is to highlight promising techniques
and help direct future research.

Much of this survey focuses on the Android platform, which has been the
platform of choice for researchers. This likely results because: 1) Android is open
source and widely popular, allowing researchers to build prototypes to validate
their ideas for real applications; and 2) Android is the only platform that allows
(and encourages) flexible communication between applications, which introduces
interesting security problems for study.

We begin our survey by discussing protections already in place by current
smartphone platforms. Next, we introduce and contrast proposals to enhance
these models. We then discuss approaches for analyzing applications to identify
dangerous behavior. We conclude by highlighting promising research directions.

2 Background

Shown in Figure 1, smartphones retrieve apps from application markets and run
them within a middleware environment. Existing smartphone platforms rely on
application markets and platform protection mechanisms for security. We now
overview protections currently implemented in popular platforms.

o e N

App | App | App
. (@)~
App . P
Middleware (Android, iOS)
Application Phone

Market —— Platform (Linux, Darwin)

Hardware | Baeband
S % RN J

Fig. 1. Smartphone architecture

2.1 Application Markets

Finding and installing applications proved to be a major hurdle for users of
early smartphone platforms such as Symbian OS, RIM BlackBerry OS, and
Microsoft Windows Mobile, which required manual app installation. Using a PC
Web browser, the user navigates to a search engine or app aggregation website
to find and download an app, and then must connect a USB cable between the
PC and the phone to install the application.

Apple’s release of the App Store in 2008 triggered a surge in smartphone
popularity. Markets benefit developers by simplifying app discovery, sales, and
distribution. More importantly, markets benefit users by simplifying app discov-
ery, purchase, and installation. In fact, the simplicity and ease of use of this
one-click installation model has led to over 10 billion downloads in only a few
years [3], and was quickly adopted by all other major smartphone platforms.

Application markets can provide several types of security utility. First, they
can implement a walled-garden, where the market maintainers have exclusive
control over what applications users can install. Second, they can provide a
choke point for application security certification. Finally, they can provide remote
software management. We compare and contrast Apple’s App Store and Google’s
Android Market to demonstrate these features.

Apple currently implements the walled-garden model for i0S devices. In con-
trast, Android allows users to install applications from any source, including ad-
ditional application markets (e.g., the Amazon AppStore). This is often cited as
both a feature and security drawback. However, to install a non-Android Mar-
ket application, the user must change default settings. Most users leave default
settings, and therefore are restricted to the applications available in the An-
droid Market. Furthermore, the Android Market restricts what applications are
available based on the cellular provider and handset model. Initially, AT&T dis-
abled the ability for its Android devices to install applications from non-Android
Market sources, and effectively implementing a walled-garden.

Markets can also provide a choke point for security certification. A walled-
garden ensures this, but it is not necessary. If Android users use default settings,
they can also benefit. The level of security tests currently implemented is unclear.
Apple performs software tests, but they are not forthcoming to the extent of

which are for security. Google performs no testing of applications acceptance
into the Android Market; however, they have quickly removed malware when
identified by researchers [14]. Given recent discoveries of Android malware [30],
they likely perform some “unofficial” security analysis after acceptance.

Finally, markets can remotely manage software on handsets. Software man-
agement is a historically difficult challenge in desktop environments. Application
markets provide a balance of remote administration that allows users to feel like
they are in control, but can intervene when necessary. Google recently demon-
strated the value of this model when it not only remotely uninstalled malware
from handsets, but also pushed a security patch application that repaired changes
to the OS made by the malware [2]. By placing this ability in the market, it is
unclear whether users actually need antivirus software.

2.2 Platform Protection

In traditional desktop systems, OS protection policy is based on the user: appli-
cations run as the user and can access all the user’s files. In contrast, smartphone
OS protection policy is based on applications. By default, each smartphone ap-
plication is isolated, e.g., sandbox policies in iOS, and uids in Android.

Permissions An isolated and unprivileged application has very limited func-
tionality. Therefore, smartphone platforms allow access to individual sensitive
resources (e.g., address book, GPS) using permissions. A permission is a form of
capability. However, unlike capabilities, they do not always support delegation.
Each platform uses permissions in slightly different ways. Au et al. [4] compare
the differences between the most prominent platforms.

There are two general types of permissions: time-of-use and install-time. A
time-of-use permission is approved by the user when the application executes a
sensitive operation, e.g., i0S’s prompt to allow an application access to location.
An install-time permission is approved by the user when the application is in-
stalled. For Android, this is the user’s only opportunity to deny access; the user
must accept all permission requests or not install the application.

Install-time permissions serve multiple purposes. They provide [31]: a) user
consent, b) defense-in-depth, and c¢) review triaging. Install-time permissions
provide defense-in-depth by defining a maximum privilege level, requiring an at-
tack on an application to additionally exploit a platform vulnerability to perform
tasks outside of the application’s scope. Studies have also found that applications
do not simply request every permission [6, 31], making them valuable attributes
for security review triaging. For example, if an application does not have the
permission to access location, it cannot possibly leak location information [24].
Felt et al. [31] further discuss the effectiveness of install-time permissions.

Android permissions have two additional important characteristics. First,
permission levels restrict install-time approval; there are four levels: normal, dan-
gerous, signature, and signature-or-system. Only dangerous permissions are pre-
sented to the user. Normal permissions are always granted and provide defense-
in-depth and review triage. Signature permissions allow application developers

to control permissions that provide access to exported interfaces. They are only
granted to applications signed with the same developer key. Finally, signature-
or-system permissions are also granted to applications signed with the firmware
key (or installed in Android’s “/system” partition). Signature permissions are
primarily used to prevent third-party apps from using core system functionality.
The second characteristic is Android’s limited ability for permission delega-
tion. Permissions protecting exported database interfaces can be delegated to
other applications with row-level granularity (if allowed by the database, which
is not default). This allows, for example, an Email application to give an image
viewer application access to a specific attachment, but not all attachments.

Application Interaction Currently, Android is the only platform that allows
flexible application communication. While Android is based on Linux, it has few
similarities to a traditional UNIX-based OS. The Android middleware bases ex-
ecution on components, not processes. By standardizing programing interfaces
between components, application developers can seamlessly transfer execution
between applications, and automatically find the best component and applica-
tion for a task. Several articles [28,13,17] overview component interactions and
security concerns, therefore, we restrict ourselves to the highlights.
Applications consist of collections of components. There are four compo-
nent types: activity, broadcast receiver, content provider, and service. Android
forces developers to structure applications based on the component types. Ac-
tivity components define the application’s user interface; each “screen” shown
to the user is a different activity component. Broadcast receiver components are
mailboxes to system and third-party application events, often acting as long-
term callback methods. Content provider components are databases and are the
primary way to share persistent data between applications. Finally, service com-
ponents are daemons that define custom RPC interfaces. Each component type
has standardized interfaces for interaction; one can, start an activity, broadcast
a message to listening receivers, and bind to a service. This interaction is based
on a primitive called an intent message. An important feature of intent messages
is the ability to address them to implicit destinations, called action strings. Simi-
lar to MIME types, the Android middleware uses action strings to automatically
determine which component or components should receive the intent message.
Android’s application model requires developers to participate in the phone’s
security. They must specify (or at least influence) the security policy that pro-
tects component interfaces. This security policy is based on permissions. The
Android platform defines permissions to protect itself, but developers may de-
fine new permissions. As discussed above, Android permissions are requested by
and granted to applications at install time. At runtime, components can interact
only if the caller application has the permission specified on the callee compo-
nent. Enck et al. [28] describe additional Android security framework subtleties.
Because Android relies on developers to specify security policy, applications
may introduce vulnerabilities for core system resources. Davi et al. [20] were the
first to discuss privilege escalation attacks on permissions (not to be confused

with attacks resulting in root privilege). They describe an attack on the Android
Scripting Environment (ASE) application. The ASE application is granted the
SEND_SMS permission at install, and a malicious application is able to use the
Tcl scripting interface to send SMS messages to premium-rate numbers. This
scenario has also been discussed as a confused deputy attack, where a privileged
application cannot (or does not) check if a caller is authorized to indirectly invoke
a security sensitive operation [32, 22].

3 Protection Mechanisms

Each smartphone platform defines a protection system to defend users against
dangerous functionality in applications. In the previous section, we discussed
permission-based protection policy. In this section, we discuss research proposals
for enhancing existing smartphone protection systems, as well as their limita-
tions, which often restrict practical deployment.

3.1 Rule Driven Policy Approach

The often-cited limitation of smartphone protection systems is insufficient policy
expressibility. To address this, researchers have proposed new policy languages
supporting their requirements and demonstrated how to integrate the new policy
language into their target operating system. However, to make full use of these
policy languages, system developers, application providers, and users need to
define an appropriate policy rule-set.

Ton et al. [39] were among the first to define an extended security policy frame-
work for mobile phones. They propose xJ2ME as an extension for J2ME based
mobile devices that provides fine-grained runtime enforcement. At the time, un-
limited data service plans were rare, and their policies focused on limiting the
consumption of network services (e.g., data, SMS, etc). While network service
use is still a security concern, unlimited (or practically unlimited, multi-GB)
data service plans reduce the need for such policies. Furthermore, determining
appropriate quotas for individual applications is not always straightforward, and
frequently must be defined by the end user.

Similar to this work, Desmet et al. [21] propose Security-by-Contract (SxC)
for the .NET platform to enhance Windows CE based phones. Conceptually,
SxC allows the user or application distributor to define a policy specifying how
an application should operate when it is run. The contract provides a distinct
advantage over simply signing “certified” applications, as the contract can be
customized for the target environment. These contracts are similar to the install-
time permission model later used by Android, but provide greater expressibility.
The contract policies specify allowed security related events, including access
and usage quotas for the file system, network, and screen. Similar to xJ2ME,
their motivating policies are difficult to define per-application.

The Kirin install-time certification system, proposed by Enck et al. [27],
was the first security policy extension for Android. Enck et al. observed that

while Android’s install-time permissions inform the user what an application
can access, they do not abstract the risk associated with specific combinations
of permissions. Kirin uses both permissions and action strings listed in the ap-
plication’s package manifest to infer an upper bound on its functionality. Kirin
modifies Android’s application installer and can be used to prevent application
installation, or to display statements of risk (rather than permissions) at install-
time. Kirin is only as good as it’s rules, therefore, Enck et al. proposed and
followed a methodology based on security requirements engineering to define
rules to prevent different types of dangerous functionality. Unfortunately, Kirin
rules are limited by Android’s permission granularity, and therefore cannot ex-
press certain policies, e.g., differentiate network destinations. Furthermore, some
policies simply cannot be expressed at install-time, e.g., when an application
conditionally accesses a sensitive resource such as location.

Shortly after Kirin, Ongtang et al. [52] proposed Saint. Whereas Kirin fo-
cuses on preventing malware, Saint focuses on providing more expressive security
policy constraints for developers. Saint policies allow application developers to
declaratively specify incoming and outgoing interactions from the point of view
of their applications. It defines both install-time and runtime policies. Install-
time policy rules place dependency constraints on permissions requested by ap-
plications, e.g., based on other permissions, application names, signatures, and
versions. More valuable are runtime policies, for which Saint places reference
monitor hooks within Android’s middleware. The runtime policies specify both
caller and callee constraints based on permissions, signatures, configuration, and
context (e.g., location, time, etc). Providing both caller and callee policies allows
an application to protect who can use its interfaces, as well as declaratively (as
opposed to programmatically) restrict on who it can interface with. Like other
rule-based policy frameworks, Saint’s usefulness is limited by desirable policies.
Ongtang et al. motivate Saint with a hypothetical shopping application that
utilizes Android’s ability to modularize functionality into separate applications.
In follow on work [53], the authors demonstrate Saint’s value by defining policies
for several real applications from the Openlntents project.

Ongtang et al. [51] also proposed Porscha to enforce digital rights manage-
ment (DRM) policies for content. Porscha is specifically designed for Email,
SMS, and MMS, and allows content owners to specify access control policies
that restrict which applications can access the content, and under what condi-
tions, e.g., location and maximum number of views. To do this, Porscha creates
a shim in Android’s SMS and network communication processing to: 1) intercept
messages, 2) remove encryption that binds content to a specific device, and 3)
place the messages in restricted storage that enforce content policies. Porscha
provides valuable utility to enterprises and governments: the content sender can
ensure only trusted applications and read and process messages. However, there
is limited motivation to use Porscha for general user communication.

Several additional works have proposed fine-grained policies for Android.
Conti et al. [18] proposes CRePE, an access control system for Android that
enforces fine-grained policies based on context, e.g., location, time, temperature,

noise, light, and the presence of other devices. Nauman et al. [47] propose the
Android Permission Extension (Apex), which allows users to select which per-
missions an application is actually granted. Apex also supports dynamic policies,
such as SMS sending quotas, and times of day that GPS can be read.

Finally, Bugiel et al. [10] propose XManDroid to mitigate permission privi-
lege escalation attacks in Android. XManDroid seeks to prevent both confused
deputy attacks and collusion between to applications (which cannot be detected
by Kirin). XManDroid tracks communication between components in different
applications as an undirected graph with application uids as vertices. System
services using the same uid are separated using virtual vertices. Policies restrict
component interaction based on communication paths and vertex properties. For
example, “an application that can obtain location information must not com-
municate [directly or indirectly with] an application that has network access.”
The major hurdle for XManDroid is defining useful policies that do not result
in excessive false alarms. Not all communication contains sensitive information,
and when it does, it may be desired by the user. Therefore, XManDroid needs
to define and maintain policy exceptions.

Observations The obvious limitation of rule driven policy frameworks is the
definition and maintenance of the rules. When proposing new frameworks, re-
searchers must a) motivate the need for enhanced policy expressibility, and b)
discuss how new policies can be identified, defined, and maintained. If researchers
cannot identify a set of rules that require the full extent of the policy express-
ibility, they should reconsider the requirements. This aids model clarity and rule
specification. For example, the final Kirin policy language [27] is significantly
simpler than the original proposal [26].

Motivating policy expressibility is difficult when it is designed to address
application-specific needs. In such cases, researchers should survey real appli-
cations to motivate several scenarios in which the enhanced policy is needed.
Ideally, existing applications will motivate the policy expressibility. However,
Android applications have been slow to adopt the platform’s “applications with-
out boundaries” mentality, and mostly operate in isolation. Therefore, proposals
such as Saint must use mostly hypothetical scenarios. Anecdotally, this trend is
changing, thereby allowing better motivating examples.

Policy definition and maintenance is a difficult. New proposals often gloss
over the fact that their system will require users to define appropriate policy.
Simultaneously useful and usable policy systems are very difficult to create.
This is likely the reason Android’s existing protection system strikes a balance
between security and usability. In general, more specific rules often result in
fewer exceptions, but require more upfront work, whereas more general rules
require less upfront work, but result in more exceptions.

3.2 High-level Policy Approach

Traditional OS protection systems such Bell-LaPadula [7] and Biba [9] define se-
curity with respect to information flow control. These approaches label processes

and resources and define a mathematical specification for label interaction, e.g.,
“no write down,” “no read up.” Such approaches allow proofs of high-level se-
curity guarantees and policy correctness. In contrast, it is difficult to show that
a rule driven policy is complete or correct.

Mulliner et al. [45] propose a process labeling model for Windows CE smart-
phones. Their goal is to prevent cross-service attacks, e.g., to prevent an exploit
of a WiFi application from making phone calls. To do this, they assign labels to
sensitive resources, e.g., Internet and telephony. When a process accesses a sen-
sitive resource, the resource label is added to the process label (i.e., high-water
mark). The system policy defines sets of incompatible labels based on high-level
goals of preventing service interaction. An additional rule-set is required to define
exceptions to the label propagation model.

A common high-level security goal for smartphones is isolation between busi-
ness and personal applications. Isolation is achieved by defining two security
domains (e.g., personal and business) and not allowing information flows be-
tween domains. OS virtualization provides a natural method of achieving this
goal, e.g., run one OS instance for personal apps, and one for business apps.
VMware provides a mobile solution [59]; however, it runs the business security
domain as a hosted VM inside of the personal OS security domain. This slightly
skewed threat model is a result of usability requirements: employees take their
phone to the corporate IT for business VM installation. In contrast, Motorola
is investigating bare metal hypervisors for mobile phones [36], which provide
stronger security guarantees. Similarly, Lange et al. [41] propose the open source
L4Android project, which uses an L.4-based hypervisor.

Isolation between security domains can also be implemented within the OS.
Bugiel et al. [11] propose TrustDroid, which provides lightweight domain iso-
lation in Android. TrustDroid is extensible to many security domains, but is
motivated with three: system, trusted (third-party), and untrusted (third-party).
To allow system operation, TrustDroid allows interaction between the system
domain and both trusted and untrusted domains. The policy prevents interac-
tion between trusted and untrusted. To ensure an untrusted app cannot route
through a system app to attack a trusted app, TrustDroid modifies system con-
tent provider and service components to enforce the isolation policy. By shifting
the isolation mechanism within the OS, TrustDroid reduces the processing and
memory overhead of running two separate operating systems. It also allows the
user to consolidate common resources such as the address book. In the virtual-
ized OS environment, the user must maintain two copies of such resources.

High-level policies have also been proposed to prevent confused deputy at-
tacks in Android. Felt et al. [32] propose IPC Inspection to determine if an
application should indirectly access a sensitive operation. IPC Inspection gets
its name from Java Stack Inspection, which inspects the call stack for unprivi-
leged code. However, its runtime logic has similarities to low-water mark Biba [9]
in that it reduces the effective permission set on an application based on the per-
missions of the applications that invokes its interfaces. That is, if app A accesses
app B, B’s effective permissions will be reduced to the intersection of A and B’s

permissions. Similar to low-water mark Biba, over time, B’s permissions will be
reduced to), therefore, IPC Inspection uses poly-instantiation of applications
to reset permissions. Unfortunately, IPC Inspection fundamentally changes the
semantics of an Android permission, assigning it transitive implications. This
change is incompatible with applications that modularize functionality. For ex-
ample, the Barcode Scanner application has the CAMERA permission to take a
picture and return the encoded text string. Normally, the application that calls
Barcode Scanner does not need the CAMERA permission, nor does it need to read
directly from the camera. However, IPC inspection requires the caller application
to have the CAMERA permission, thereby moving away from least privilege.

IPC Inspection assumes application developers do not properly check caller
privilege. However, the challenge is determining the context in which the call
originated. To address this, Dietz et al. [22] propose Quire, which records the
provenance of a chain of IPC invocations. This approach provides an access
control primitive for application developers rather than an enforcement model.

Observations Android’s permission-based protection system is rule driven,
therefore, one must understand the semantics of individual permissions to un-
derstand the global policy. Android permissions are non-comparable and hence
cannot be arranged in a lattice, nor are they intended to be transitive. Because
of this, high-level policy approaches based entirely on Android permissions will
inherently result in many policy exceptions. Permissions can make excellent se-
curity hints, if their semantics and limitations are kept in mind. Sensitive in-
formation is increasingly application-specific and introduced by third-party ap-
plications (e.g., financial). Therefore, application developers must contribute to
the global protection policy.

3.3 Platform Hardening

Most smartphone functionality occurs within a middleware layer. This simplifies
the underlying platform and allows application of traditional platform hardening
technologies. As a result, mandatory access policies can be simpler. For exam-
ple, Muthukumaran et al. [46] design a custom SELinux policy for OpenMoko
to separate trusted and untrusted software. Shabtai et al. [57] describe their
experiences porting SELinux to Android, and create a custom SELinux policy.
However, they use targeted mode, whereas a strict mode would provide stronger
holistic guarantees. Finally, Zhang et al. [60] apply SELinux to a generic Linux
phone to provide isolated security domains consistent with the TCG’s Trusted
Mobile Phone specification.

Integrity measurement and remote attestation have also been applied to
smartphones. The Muthukumaran et al. [46] SELinux-based installer was de-
signed to support the policy reduced integrity measurement architecture (PRIMA).
Similarly, Zhang et al. [61] discuss an efficient integrity measurement and at-
testation for the LiMo platform. Finally, Nauman et al. [48] provide integrity
measurement of Android applications for enterprises and to prevent malware.

Observations Device security relies on its trusted computing base (TCB),
therefore platform hardening is an important component for smartphone se-
curity. However, enterprises and users should keep in mind that while SELinux
and remote attestation help security, it is a building block. The most significant
challenges lie in defining application-level security policies.

3.4 Multiple Users

Smartphone platform designs assume there is one physical user. This simplifies
protection systems and allows them to focus on applications. However, users
occasionally lend their phone in social situations. Karlson et al. [40] studied how
users of different smartphone platforms lend their phone to other physical users.
Their findings motivate a reduced-capability guest profile. Liu et al. [42] report
similar findings and propose xShare, a modification of Windows Mobile that
creates “normal” and “shared” modes. Finally, Ni et al. [49] propose DiffUser
for Android. DiffUser expands a phone from a single user model to one that has
three classes: administrative users, normal users, and guest users.

Observations The studies confirm our intuition: users sometimes share their
smartphones with friends for whom “full access” is undesirable. We will likely see
many proposals claiming to have “the solution.” Fundamentally, this problem
requires user participation, unless the phone can reliably predict which applica-
tions the owner would like the current physical user to access (e.g., Web browser
and games, but not Email, except when the user needs to share an Email). As
existing proposals have shown, modifying a platform to provide a “guest mode”
is not terribly complex. Therefore, future research must demonstrate usability.

3.5 Faking Sensitive Information

Studies [24, 23, 25] have identified many smartphone applications leaking phone
identifiers and location to servers. In response, Beresford et al. [8] propose pro-
viding fake or “mock” information to applications. Their system, MockDroid,
returns fake fixed values for location and phone identifiers. MockDroid also fakes
Internet connections (by timing out connections), intent broadcasts (by silently
dropping them), and SMS/MMS, calendar, and contacts content providers (by
return “empty” results). To enable fake data, users must configure “mocked per-
missions” for each application. TISSA, proposed by Zhou et al. [62], has a simi-
lar design with slightly greater flexibility, allowing users to choose from empty,
anonymized, or fake results for location, phone identity, contacts, and call logs.
Finally, Hornyack et al. [38] propose AppFence. In addition to substituting fake
data for phone identifiers and location, AppFence uses TaintDroid [24] (discussed
in Section 4) to block network transmissions containing information specified by
the user to be used on-device only. AppFence also uses “salted” phone identi-
fiers, which are guaranteed to be unique to a specific application and phone, but
different between applications on the phone. This technique allows application
developers to track application usage without compromising user privacy.

Observations Transparently incorporating fake information is an elegant way
to get around the Android’s limitation of not allowing users to deny specific
permissions to applications. While permission selection is trivial to implement,
it will likely break many existing applications, and therefore is unlikely to be
included in the official Android distribution. A second argument against permis-
sion selection is usability. Proposals to insert fake information have the same, if
not worse, usability limitations. Nonetheless, there is user demand for more con-
trol over privacy sensitive information. Finally, there are hidden consequences to
faking sensitive information. Many suspect privacy sensitive values are the basis
of an advertisement and analytics economy. Restricting privacy values may in
turn increase the monetary cost of applications.

4 Application Analysis

As discussed in Section 2, application markets are the primary means of deliver-
ing applications to end users. Hence, they can be used as a security choke-point
for identifying malicious and dangerous applications. One difficulty of using mar-
kets in this manner is a lack of a common definition for “unwanted” applications.
Markets quickly remove malicious applications. However, malicious intent is not
always clear. Should a market remove applications meant to monitor (i.e., spy
on) children? Should an open market, e.g., the Android Market, remove applica-
tions that exploit system vulnerabilities to provide the user desired functionality?
Beyond this, there is a class of dangerous functionality that many reputable ap-
plications include, specifically disclosing privacy sensitive information such as
geographic location and phone identifiers without informed consent by the user.

There are limits to the security protections that can be provided by mar-
kets [43]. However, recent advancements in application analysis are moving
towards more automated certification. In this section, we discuss several ap-
proaches for identifying malware and grayware (i.e., dangerous apps without
provable malicious intent).

4.1 Permission Analysis

Permissions articulate protection policy, but they also describe what an appli-
cation can do once installed. As described in Section 3, Enck et al. [27] were
the first to use Android permissions to identify dangerous functionality. Kirin
breaks dangerous functionality down into the permissions required to perform it.
If an application does not have a requisite permission, the attack cannot occur
(without exploiting a vulnerability). Enck et al. used Kirin to study 311 top free
applications across different Android Market categories. Their rules flagged 10
applications, 5 of which were questionable after reviewing their purpose.
Following this work, Barrera et al. [6] performed permission analysis of the
top 50 free applications of every category of the Android Market (1,100 apps
in total). They report an exponential decay in the number of applications re-
questing individual permissions, i.e., many applications request only a small set

of permissions. Barrera et al. also use Self Organizing Maps (SOM) to analyze
permission usage. SOM maps the highly dimensional permission space onto a 2-
dimensional U-matrix, allowing visual inspection of application permission use.
They use heat-maps to show permission frequency in the cells, generating a U-
matrix for each permission. By comparing U-matrices for different permissions,
one can identify permissions that are frequently requested together. Barrera et
al. also labeled cells with categories using a winner-take-all strategy. That is, if
most applications mapped to a cell are from the “Multimedia” category, then
that cell is marked as “Multimedia.” However, their findings do not indicate any
correlation between categories and permission requests.

Finally, Felt et al. [31] studied the effectiveness of Android’s install-time per-
missions. They considered 100 paid and 856 free applications from the Android
Market. Similar to Barrera et al., they found that most applications request
a small number of permissions. They also analyzed the frequency of permis-
sion requests, comparing free and paid apps. The INTERNET permission is by
far the most frequently requested. They also found that developers make obvi-
ous errors, e.g., requesting non-existent permissions. In follow on work, Felt et
al. [29] create a mapping between Android APIs and permissions and propose
the Stowaway tool to detect over-privilege in applications. Note that to do this,
Stowaway performs static analysis of applications (discussed below). Felt et al.
report the 10 most common unnecessary permissions, the top 2 of which are
ACCESS_NETWORK_STATE and READ_PHONE_STATE.

Observations Permissions are valuable for performance efficient security anal-
ysis, but they do not tell the whole story. The Android platform developers made
security and usability trade-offs when defining permissions, and many researchers
have noted granularity issues. For example, the READ_PHONE_STATE permission is
used to protect the APIs for both determining if the phone is ringing and for re-
trieving phone identifiers. This leads to ambiguity during permission analysis. A
second culprit of ambiguity is the INTERNET permission: most applications do not
need access to all network domains. However, unlike READ_PHONE_STATE, making
INTERNET more granular is nontrivial in Android, as enforcement is performed
in the kernel based on a gid assigned to applications. At this enforcement point,
the DNS name is no longer available. That said, to date, Android application
developers are not significantly over-requesting permissions, which leaves some
potential for identifying dangerous applications by their permissions. However,
studies indicate considering permissions alone is limited, and they are likely best
used to steer dynamic and static analysis.

4.2 Dynamic Analysis

Researchers began with permission analysis because application source code was
not available. The next step in studying applications is dynamic analysis, i.e.,
watching applications run. Dynamic analysis can help resolve ambiguity in per-
mission granularity. It also resolves configuration dependencies. For example, the

Kirin study identified applications that only send geographic location informa-
tion to a network server if the user changes a default configuration.

Enck et al. [24] propose TaintDroid to identify when applications send privacy
sensitive information to network servers. To do this, TaintDroid uses dynamic
taint analysis, also known as taint tracking. This technique marks information
at source APIs when its type is unambiguous. Smartphones have many such
sources, e.g., location, camera, microphone, and phone identifiers. Next, the taint
tracking system automatically propagates the markings on some granularity, e.g.,
individual instructions: a = b+ ¢. Enck et al. modified Android’s Dalvik VM to
perform instruction-level taint tracking. They also integrate the taint tracking
into the broader system using coarser granularities, e.g., files and IPC messages.
Finally, at a taint sink, the taint tracking system inspects markings on API
parameters and performs a policy action. TaintDroid uses the network APIs as
taint sinks and logs the event if a taint marking exists in a data buffer. Enck et
al. used TaintDroid to study 30 popular applications from the Android Market
and found 15 sharing location with advertisers and 7 sharing phone identifiers
with remote servers, all without the users knowledge.

TaintDroid has several limitations, discussed in the paper. First, TaintDroid
can only identify that privacy sensitive information has left the phone, and not if
the event is a privacy violation. Determining a privacy violations requires knowl-
edge of (a) if the user was aware or intended it to occur (there are many desirable
location-aware applications), and (b) what the remote server does with the value.
Most researchers and users are only capable of identifying (a), therefore leak-
ing information without the user’s knowledge has generally been considered a
privacy violation. Second, TaintDroid only tracks explicit flows. Therefore, a
malicious developer can use implicit flows within an application to “scrub” taint
markings from variables. However, such actions are likely identifiable using static
analysis and draw attention to developers for attempting to hide their tracks.

The TaintDroid analysis framework was made open source and subsequently
used by several researchers. MockDroid [8] and TISSA [62] (discussed in Sec-
tion 3.5) use TaintDroid to evaluate their effectiveness. AppFence [38] (also dis-
cussed in Section 3.5) adds enforcement policies to TaintDroid. The authors also
study additional applications and characterize privacy exposure. Finally, Gilbert
et al. [35] extend TaintDroid to track specific types of implicit flows and discuss
approaches for automating application analysis. They find that random inputs
commonly get “stuck” in parts of applications’ UI. Therefore, they use concolic
execution, switching between symbolic and concrete execution as necessary.

Observations Dynamic analysis identifies what actually happens when an ap-
plication is run. Static analysis (discussed next) cannot capture all runtime con-
figuration and input. For example, the AdMob SDK documentation [1] indicates
it will only send location information if a configuration value is set in the ap-
plication’s manifest file. Furthermore, applications can download and execute
code, which is not available for static analysis. However, dynamic analysis is
limited by scalability. As discussed by Gilbert et al. [35], generating test inputs

is hard. Finally, any automated analysis is limited in its ability to understand
user intentions. Ideally, automated privacy analysis should only raise alarms for
privacy violations. Researchers seeking to scale tools such as TaintDroid must
attempt to characterize identified leaks.

4.3 Static Analysis

Static program analysis can be done with or without source code. Egele et al. [23]
propose PiOS to perform static taint analysis directly on iOS application bina-
ries. PiOS reconstructs control flow graphs from compiled Objective-C, which
is nontrivial because object method invocation is funneled through a single dis-
patch routine. Interestingly, Egele et al. found that iOS’s handling of user in-
teractions disrupts the control flow in the CFG. Therefore, to identify potential
privacy violations, PiOS uses control flow analysis on the CFG, followed by data
flow analysis to confirm information reached the sink. Egele et al. use PiOS
to study 825 free applications form Apple’s App Store, and 582 applications
from Cydia’s BigBoss repository. They find that more than half leak the pri-
vacy sensitive device ID without the user’s knowledge. They also report a strong
penetration of ad and analytics libraries.

Android researchers have also performed static analysis of low-level repre-
sentations. Chin et al. [17] propose ComDroid, which operates on use disassem-
bled DEX bytecode. ComDroid identifies vulnerabilities in Intent communication
between applications, including: broadcast theft, activity hijacking, service hi-
jacking, malicious broadcast injection, malicious activity launch, and malicious
service launch. Chin et al. used ComDroid to analyze 50 popular paid and 50
popular free applications, manually inspecting the results of 20. In these 20 appli-
cations, they found 34 exploitable vulnerabilities. Other tools developed by this
group, including IPC Inspection [32] and Stowaway [29] (discussed above), build
upon ComDroid. However, working directly on DEX bytecode is difficult. As
noted in the ComDroid paper [17], its control flow analysis follows all branches,
which can result in false negatives.

In contrast, Enck et al. [25] propose ded to reverse Android applications to
their original Java form, for which sophisticated static program analysis tools
already exist. Reversing DEX bytecode to Java bytecode is nontrivial: the JVM
is stack-based while the DVM is register-based; DEX inserts scalar constants
throughout the bytecode, and most importantly, DEX loses the type seman-
tics of scalars in several important situations. Using ded, Enck et al. decompile
1,100 popular applications and perform a breadth of security program analy-
sis. They target both dangerous functionality and vulnerabilities using custom
rules specified for the Fortify SCA framework and follow the program analysis
with substantial manual inspection of results. In doing so, they report many
observations that provide insight into how Android applications are developed.
Overall, their findings were similar to previous privacy studies, and echo con-
cerns with Intent APIs. Similar to the i0OS study [23], Enck et al. also found a
strong penetration of ad and analytics libraries.

Finally, researchers modeled Android component interaction using source
code analysis. Chaudhuri [15] proposes a formal model for tracking flows be-
tween applications using permissions as security types. In follow-on work, Fuchs
et al. [33] propose SCanDroid for automated application certification using the
WALA Java bytecode analysis framework. However, using permissions as the
basis of security type analysis in Android is limited, since most permissions are
non-comparable and cannot be partially ordered. SCanDroid was proposed be-
fore ded was available, and therefore was only evaluated against open source
applications. Moving forward, combining SCanDroid’s formal model and anal-
ysis tools with the motivations of ComDroid [17] and IPC Inspection [32] and
applying it to code recovered by ded has potential for more accurate results.

Observations Static code analysis of Android applications is not as simple
as one might initially think. While Fortify SCA was useful, Enck et al. [25]
found that custom tools are required to overcome analysis hurdles created by the
Android middleware. For example, component IPC must be tracked through the
middleware, the middleware API has many callbacks that indirectly use IPC,
and APIs frequently require depend on variable state (e.g., the address book
content provider authority string). Additionally, researchers should continue to
look beyond privacy analysis. While static analysis can scale the identification of
potential privacy leaks, their existence is well known. The challenge for privacy
leak analysis is automatically determining if the leak was desired.

4.4 Cloud-based Monitoring

Early smartphone security analysis monitored application behavior from the
cloud. Cheng et al. [16] propose SmartSiren, which sends logs of device activity,
e.g., SMS and Bluetooth, to a server for aggregate analysis to detect virus and
worm outbreaks. Oberheide et al. [50] use virtualized in-cloud security services
provided by CloudAV for SMS spam filtering, phishing detection, and central-
ized blacklists for Bluetooth and IP addresses. Schmidt et al. [55] send device
features such as free RAM, user activity, process count, CPU usage, and number
of sent SMS messages to a central server for intrusion detection analysis. A sim-
ilar approach is taken by Shabtai et al. [58] in their “Andromaly” proposal for
Android. Portokalidis et al. [54] propose “Paranoid Android,” which creates a
clone of an Android phone in the cloud. A proxy sits in the network so that the
network traffic does not need to be uploaded to the server from the phone, and
they use “loose synchronization” to only send data when the user is using the
device (to safe energy). Finally, Burguera et al. [12], propose Crowdroid, which
crowd-sources intrusion detection based on syscalls used by applications.

Observations Before all of this work, Miettinen et al. [44] discussed the limita-
tions of network based intrusion detection for malicious behavior in smartphones.
Their arguments include: (1) administrational boundaries, (2) technical bound-
aries (e.g., network connection), and (3) conception limitations (e.g., attacks to

local storage not in view of network). While sending logs and virtualization ad-
dress (3), the former to remain valid. Specifically, Miettinen et al. discuss the
need to ensure that systems do not expose private data to the cloud services. It
is unclear what level of privacy and administrative control users are willing to
lose in order to gain security. As mentioned in Section 2, application market kill
switches and software management strike a careful balance.

5 Additional Research Directions

In Sections 3 and 4, we discussed existing research proposals, their limitations,
and concluded each discussion area with potential enhancements and future
directions. In this section, discuss several additional areas with promise. None
of these areas are new for computer security, and each has inherent limitations.

Application Discovery There are hundreds of thousands of applications avail-
able for iOS and Android, many of which are practically useless and duplicates
of one another. When searching for a new application, the user has to balance
a) price, b) functionality, c) aesthetics, and d) security (and security is unfortu-
nately often the last consideration). Recommendations are often made via word
of mouth, but social search will likely soon emerge. Review services such as
Consumer Reports have addressed the first three criteria for decades. As dis-
cussed in Section 4, there is no one-size-fits-all criteria for security and privacy.
Users have different requirements, particularly when privacy is concerned. One
potential model is to use Kirin [27] rules to influence security ratings. To be
successful, security reviews need to be integrated into application discovery user
interfaces, e.g., application markets. Along these lines, Barrera et al. [5] propose
Stratus to consolidate multiple application markets, which can address malware
opportunities that arise when bargain shoppers compare prices between markets.

Modularity and Transitivity Android allows developers to be compartmen-
talize functionality into multiple applications. This has several advantages: 1)
it supports least privilege, 2) it creates boundaries that allow OS mediation,
and 3) it simplifies application analysis by defining distinct purposes for ap-
plications. Advertisement and analytics functionality is an immediate and real
example of where compartmentalization can benefit security. Often, applications
only require Internet access to support ads or analytics. Splitting off this func-
tionality reduces the privilege needed by applications and allows certification
tools to focus on ad and analytics functionality. However, as noted by several
researchers [20, 32, 22|, separating functionality into applications can result in
privilege escalation attacks, because Android’s permissions are not transitive.
Unfortunately, as discussed in Section 3.2, making permissions transitive is not
a practical solution. Therefore, a new security primitive may be required.

Security via UI Workflow Security policies are difficult for users to under-
stand, and there have been many complaints that Android relies on the user to
approve install-time permission requests. Security enforcement does not always
need to be an explicit permission or policy statement. Consider the two meth-
ods of making phone calls in Android. If an application uses the “CALL” action
string, it requires the CALL_PHONE permission, and the call is connected immedi-
ately; however, if the application uses the “DIAL” action string, no permission is
required, and the user is presented the phone’s default dialer with the number
entered. Realistically, all applications should use the “DIAL” action string (un-
less it replaces the dialer), because the user is naturally involved in the security
decision via the workflow. There is no security question, e.g., “allow location,”
and the user is never aware that a security decision was made. Future research
should investigate opportunities to integrate security into the Ul workflow.

Developer Tools Studies [25,17,32] have shown that developers need more
oversight when using security sensitive APIs. In particular, these studies have
reported vulnerabilities at application interfaces, i.e., Intents. Developer tools
should be enhanced with checks that look for Intent forging attacks, unpro-
tected Intent broadcasts, and confused deputy attacks. For confused deputies,
the developer may not have sufficient context to prevent an attack, therefore
new primitives such as IPC provenance [22] are required. Additionally, research
is needed to ensure that the new security enhanced developer tools are usable,
and not simply discarded by developers.

6 Conclusion

Smartphone security research is growing in popularity. To help direct future
research, we have described existing protections and surveyed research proposals
to enhance security, discussing their advantages and limitations. The proposals
have discussed enhanced on-phone protection, as well as application analysis
that will aid future certification services. Finally, we discussed several additional
areas for future smartphone security research.

References

1. AdMob: AdMob Android SDK: Installation Instructions. http://www.admob.com/
docs/AdMob_Android_SDK_Instructions.pdf, accessed November 2010

2. Android Market: March 2011 Security Issue. https://market.android.com/
support/bin/answer.py?answer=1207928 (Mar 2011)

3. Apple Inc.: Apple’s App Store Downloads Top 10 Billion. http://www.apple.com/
pr/library/2011/01/22appstore.html (Jan 2011)

4. Au, K., Zhou, B., Huang, Z., Gill, P., Lie, D.: Short Paper: A Look at SmartPhone
Permission Models. In: Proceedings of the ACM Workshop on Security and Privacy
in Mobile Devices (SPSM) (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Barrera, D., Enck, W., van Oorschot, P.C.: Seeding a Security-Enhancing Infras-
tructure for Multi-market Application Ecosystems. Tech. Rep. TR-11-06, Carleton
University, School of Computer Science, Ottawa, ON, Canada (April 2011)
Barrera, D., Kayacik, H.G., van Oorshot, P.C., Somayaji, A.: A Methodology for
Empirical Analysis of Permission-Based Security Models and its Application to An-
droid. In: Proceedings of the ACM Conference on Computer and Communications
Security (Oct 2010)

Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
Tech. Rep. MTR-2547, Vol. 1, MITRE Corp., Bedford, MA (1973)

Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: MockDroid: Trading Privacy for
Application Functionality on Smartphones. In: Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications (HotMobile) (2011)

Biba, K.J.: Integrity considerations for secure computer systems. Tech. Rep. MTR-
3153, MITRE (Apr 1977)

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XManDroid: A New
Android Evolution to Mitigate Privilege Escalation Attacks. Tech. Rep. TR-2011-
04, Technische Universitat Darmstadt, Center for Advanced Security Research
Darmstadt, Darmstadt, Germany (Apr 2011)

Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and Lightweight Domain Isolation on Android. In: Proceedings of the ACM
Workshop on Security and Privacy in Mobile Devices (SPSM) (2011)

Burguera, 1., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Mal-
ware Detection System for Android. In: Proceedings of the ACM Workshop on
Security and Privacy in Mobile Devices (SPSM) (2011)

Burns, J.: Developing Secure Mobile Applications for Android. iSEC Partners (Oct
2008), http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
Cannings, R.: Exercising Our Remote Application Removal
Feature. http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html (Jun 2010)

Chaudhuri, A.: Language-Based Security on Android. In: Proceedings of the
ACM SIGPLAN Workshop on Programming Languages and Analysis for Secu-
rity (PLAS) (Jun 2009)

Cheng, J., Wong, S.H., Yang, H., Lu, S.: SmartSiren: Virus Detection and Alert for
Smartphones. In: Proceedings of the International conference on Mobile Systems,
Applications, and Services (MobiSys) (Jun 2007)

Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing Inter-Application
Communication in Android. In: Proceedings of the 9th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys) (2011)

Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-Related Policy Enforce-
ment for Android. In: Proceedings of the 13th Information Security Conference
(ISC) (Oct 2010)

Dagon, D., Martin, T., Starner, T.: Mobile Phones as Computing Devices: The
Viruses are Coming! IEEE Pervasive Computing 3(4), 11-15 (October-December
2004)

Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege Escalation Attacks
on Android. In: Proceedings of the 13th Information Security Conference (ISC)
(Oct 2010)

Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan, 1.,
Vanoverberghe, D.: Security-by-contract on the .NET platform. Information Secu-
rity Technical Report 13(1), 25-32 (Jan 2008)

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight
Provenance for Smart Phone Operating Systems. In: Proceedings of the 20th
USENIX Security Symposium (August 2011)

Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in
iOS Applications. In: Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS) (Feb 2011)

Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In: Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Oct 2010)

Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proceedings of the 20th USENIX Security Symposium (August
2011)

Enck, W., Ongtang, M., McDaniel, P.: Mitigating Android Software Misuse Be-
fore It Happens. Tech. Rep. NAS-TR-0094-2008, Network and Security Research
Center, Department of Computer Science and Engineering, Pennsylvania State
University, University Park, PA, USA (Sep 2008)

Enck, W., Ongtang, M., McDaniel, P.: On Lightweight Mobile Phone Applica-
tion Certification. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS) (Nov 2009)

Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security & Privacy Magazine 7(1), 50-57 (January/February 2009)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions Demys-
tified. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2011)

Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A Survey of Mobile
Malware in the Wild. In: Proceedings of the ACM Workshop on Security and
Privacy in Mobile Devices (SPSM) (2011)

Felt, A.P., Greenwood, K., Wagner, D.: The Effectiveness of Application Permis-
sions. In: Proceedings of the USENIX Conference on Web Application Development
(WebApps) (2011)

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission Re-
Delegation: Attacks and Defenses. In: Proceedings of the 20th USENIX Security
Symposium (August 2011)

Fuchs, A.P., Chaudhuri, A., Foster, J.S.: ScanDroid: Automated Security Cer-
tification of Android Applications. http://www.cs.umd.edu/~avik/projects/
scandroidascaa/paper.pdf, accessed January 11, 2011

Gartner: Gartner Says Sales of Mobile Devices in Second Quarter of 2011 Grew 16.5
Percent Year-on-Year; Smartphone Sales Grew 74 Percent. http://www.gartner.
com/it/page.jsp?id=1764714 (Aug 2011)

Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: Vision: Automated Security Validation
of Mobile Apps at App Markets. In: Proceedings of the International Workshop on
Mobile Cloud Computing and Services (MCS) (2011)

Gudeth, K., Pirretti, M., Hoeper, K., Buskey, R.: Short Paper: Delivering Secure
Applications on Commercial Mobile Devices: The Case for Bare Metal Hypervisors.
In: Proceedings of the ACM Workshop on Security and Privacy in Mobile Devices
(SPSM) (2011)

Guo, C., Wang, H.J., Zhu, W.: Smart-Phone Attacks and Defenses. In: Proceedings
of the 3rd Workshop on Hot Topics in Networks (HotNets) (2004)

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These Aren’t the
Droids You’re Looking For: Retrofitting Android to Protect Data from Imperious
Applications. In: Proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS) (2011)

Ion, I., Dragovic, B., Crispo, B.: Extending the Java Virtual Machine to Enforce
Fine-Grained Security Policies in Mobile Devices. In: Proceedings of the Annual
Computer Security Applications Conference (ACSAC) (Dec 2007)

Karlson, A.K., Brush, A.B., Schechter, S.: Can I Borrow Your Phone? Understand-
ing Concerns When Sharing Mobile Phones. In: Proceedings of the Conference on
Human Factors in Computing Systems (CHI) (Apr 2009)

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: A
Generic Operating System Framework for Secure Smartphones. In: Proceedings of
the ACM Workshop on Security and Privacy in Mobile Devices (SPSM) (2011)
Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y., Zhang, S.: xShare:
Supporting Impromptu Sharing of Mobile Phones. In: Proceedings of the Interna-
tional conference on Mobile Systems, Applications, and Services (MobiSys) (Jun
2009

MCD)aniel, P., Enck, W.: Not So Great Expectations: Why Application Markets
Haven’t Failed Security. IEEE Security & Privacy Magazine 8(5), 76-78 (Septem-
ber/October 2010)

Miettinen, M., Halonen, P., Hatonen, K.: Host-Based Intrusion Detection for Ad-
vanced Mobile Devices. In: Proceedings of the 20th International Conference on
Advanced Information Networking and Applications (AINA) (Apr 2006)
Mulliner, C., Vigna, G., Dagon, D., Lee, W.: Using Labeling to Prevent Cross-
Service Attacks Against Smart Phones. In: Proceedings of Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA) (2006)

Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
Integrity on Mobile Phone Systems. In: Proceedings of the ACM Symposium on
Access Control Models and Technologies (SACMAT). pp. 155-164 (Jun 2008)
Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model and
Enforcement with User-defined Runtime Constraints. In: Proceedings of ASTACCS
2010

1(\Taum)an, M., Khan, S., Zhang, X., Seifert, J.P.: Beyond Kernel-level Integrity Mea-
surement: Enabling Remote Attestation for the Android Platform. In: Proceedings
of the 3rd International Conference on Trust and Trustworthy Computing (Jun
2010

Ni,)2., Yang, Z., Bai, X., Champion, A.C., Xuan, D.: DiffUser: Differentiated User
Access Control on Smartphones. In: Proceedings of the 5th IEEE Workshop on
Wireless and Sensor Networks Security (WSNS) (Oct 2009)

Oberheide, J., Veeraraghavan, K., Cooke, E., Flinn, J., Jahanian, F.: Virtualized
In-Cloud Security Services for Mobile Devices. In: Proceedings of the 1st Workshop
on Virtualization in Mobile Computing (Jun 2008)

Ongtang, M., Butler, K., McDaniel, P.: Porscha: Policy Oriented Secure Content
Handling in Android. In: Proceedings of the 26th Annual Computer Security Ap-
plications Conference (ACSAC) (Dec 2010)

Ongtang, M., McLaughlin, S.,; Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Proceedings of the 25th Annual Com-
puter Security Applications Conference (ACSAC). pp. 340-349 (Dec 2009)
Ongtang, M., McLaughlin, S.,; Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. Journal of Security and Communication
Networks (2011), (Published online August 2011)

54.

55.

56.

57.

58.

59.

60.

61.

62.

Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Android: Ver-
satile Protection For Smartphones. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC) (Dec 2010)

Schmidt, A.D., Peters, F., Lamour, F., Albayrak, S.: Monitoring Smartphones
for Anomaly Detection. In: Proceedings of the 1st International Conference on
MOBILe Wireless MiddleWARE, Operating Systems, and Applications (MOBIL-
WARE) (2008)

Schmidt, A.D., Schmidt, H.G., Batyuk, L., Clausen, J.H., Camtepe, S.A., Al-
bayrak, S.: Smartphone Malware Evolution Revisited: Android Next Target? In:
Proceedings of the 4th International Conference on Malicious and Unwanted Soft-
ware (MALWARE) (Oct 2009)

Shabtai, A., Fledel, Y., Elovici, Y.: Securing Android-Powered Mobile Devices
Using SELinux. IEEE Security and Privacy Magazine (May/June 2010)

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: A Be-
havioral Malware Detection Framework for Android Devices. Journal of Intelligent
Information Systems (2011), published online January 2011

VMware, Inc.: VMware Mobile Virtualization Platform. http://www.vmware. com/
products/mobile/, accessed January 2011

Zhang, X., Aciigmez, O., Seifert, J.P.: A Trusted Mobile Phone Reference Architec-
ture via Secure Kernel. In: Proceedings of the ACM workshop on Scalable Trusted
Computing. pp. 7-14 (Nov 2007)

Zhang, X., Aciigmez, O., Seifert, J.P.: Building Efficient Integrity Measurement
and Attestation for Mobile Phone Platforms. In: Proceedings of the First Inter-
national ICST Conference on Security and Privacy in Mobile Information and
Communication Systems (MobiSec) (Jun 2009)

Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming Information-Stealing Smart-
phone Applications (on Android). In: Proceedings of the International Conference
on Trust and Trustworthy Computing (TRUST) (Jun 2011)

