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ABSTRACT

Payment Service Providers (PSPs) provide software development
toolkits (SDKs) for integrating complex payment processing code
into applications. Security weaknesses in payment SDKs can impact
thousands of applications. In this work, we propose AARDroid for
statically assessing payment SDKs against OWASP’s MASVS indus-
try standard for mobile application security. In creating AARDroid,
we adapted application-level requirements and program analysis
tools for SDK-specific analysis, tailoring dataflow analysis for SDKs
using domain-specific ontologies to infer the security semantics of
application programming interfaces (APIs). We apply AARDroid
to 50 payment SDKs and discover security weaknesses including
saving unencrypted credit card information to files, use of insecure
cryptographic primitives, insecure input methods for credit card
information, and insecure use of WebViews. These results demon-
strate the value of applying security analysis at the SDK granularity
to prevent the widespread deployment of insecure code.

1 INTRODUCTION

Mobile devices are a critical component of the modern digital pay-
ments ecosystem. Security weaknesses in payment applications
can allow malicious applications on the device and on-path at-
tackers in the network to steal payment credentials and hijack
transactions. Although banks and payment services have long been
subject to government compliance regulations and mature industry
security standards such as the Payment Card Industry Data Security
Standard (PCI-DSS) [47], comparatively little scrutiny is given to
third-party applications that integrate with payment services.
Mobile application security standards, e.g., OWASP’s Mobile Ap-
plication Security Verification Standard (MASVS) [43], are difficult
to apply to SDKs in isolation. First, the standards assume the full
context of the application is known and can be controlled. SDKs are
designed to be included into applications and some requirements do
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not apply or only partially apply. Second, existing program analysis
tools rely on the known runtime semantics of applications (e.g.,
Android’s component lifecycle). In contrast, the semantics of entry
points to code in SDKs is often unknown, and high-quality docu-
mentation is frequently not publicly available. Finally, while prior
work has considered the security of payment protocols [63, 67] and
applications taking payment information [12, 37], no prior work
has performed a comprehensive security analysis of code in the
payment SDKs themselves.

In this paper, we propose AARDroid! for identifying security
weaknesses in Android SDKs, specifically those used for payments.
The key contribution of this work is adapting the MASVS [43]
application-level requirements and program analysis tools for SDK-
specific analysis, tailoring dataflow analysis for SDKs using text
analytics and a domain-specific ontology to infer the security se-
mantics of SDK APIs. We used AARDroid to study how a set of 50
payment SDKs adhere to the MASVS requirements, finding that
37 SDKs did not meet at least one Level 1 requirement (Level 2 is
recommended for applications requiring PCI-DSS compliance).

Reviewing the AARDroid analysis results in detail, we uncovered
several concerning trends. First, we found three SDKs save unen-
crypted sensitive financial information such as credit card number
and CVC to either persistent storage or device logs. A fourth SDK
stores a CVC in encrypted form. PCI-DSS standards prohibit such
storage. Second, we found 11 SDKs rely on outdated cryptographic
primitives for sensitive functionality. Third, we found 10 SDKs
do not follow industry standards for taking credit card data from
users. Finally, we found 26 SDKs use WebViews, of which 20 allow
JavaScript, 8 allow the JavaScript bridge, 23 allow local file access,
and 21 do not clear the WebView cache. These uses of WebViews
introduce an unnecessary attack surface. Our findings underscore
the importance of increasing the minimum security standards to
which payment SDKs are held, as well as the need for automatable
methodologies for validating the compliance of such applications.

We make the following contributions in this paper.

o We propose the AARDroid static program analysis framework
for testing OWASP MASVS requirements on Android applica-
tion SDKs. Our program analysis checks span four categories
of MASVS requirements and are capable of automatically
analyzing the SDKs without relying on full applications.

1SDKs are packaged as Android Archive (. aar) files.
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o We propose techniques for tailoring dataflow analysis for SDKs.
Our framework packages SDKs into applications and de-
rives the semantics of security-relevant APIs using a domain-
specific ontology of security-sensitive terms.

o We use AARDroid to study 50 payment SDKs for Android appli-
cations. We find that nearly three-quarters of the SDKs fail to
meet at least one MASVS-L1 requirement. We also uncover
concrete security weaknesses in many of the payment SDKs.

We note that security standards such as MASVS are designed to
describe security best-practices for software development. Failure
to meet requirements does not always mean that an application
(or in this case, an SDK) is vulnerable. However, failures to meet
best-practices can result in non-compliance with industry stan-
dards (e.g., PCI DSS) and indicate deeper flaws, as demonstrated in
our empirical study. AARDroid provides an automated method of
helping developers avoid these flaws.

The remainder of the paper proceeds as follows. Section 2 pro-
vides background and related work. Section 3 overviews our ap-
proach. Section 4 describes how we capture MASVS checks using
program analysis. Section 5 details how we apply dataflow analysis
to SDKs. Section 6 reports the results. Section 7 discusses limitations.
Section 8 concludes.

2 BACKGROUND AND RELATED WORK

Security of payment systems has been studied exhaustively over the
past decade beginning with payment card fraud at the ATM [1, 2, 10,
15] and later identifying novel solutions [55, 56]. Early studies iden-
tified flaws in the logic of Cashier-as-a-Service (CaaS) providers [63],
which inspired further work that identified flaws in the business
logic of e-commerce web applications [48, 61] and third-party pay-
ment services [65]. Automated identification of protocol vulnera-
bilities [13, 35, 46] also remains an active area of research.

The evolution of mobile payment systems has inspired the secu-
rity investigation of financial applications [12, 37, 53, 58, 66] and
e-wallets [29]. Yang et al. [67] and Shi et al. [57] studied several on-
line payment service providers (cashiers), finding integration flaws
and exploits in the SDKs. Chen et al. [12] identify sensitive input
from user interfaces and apply static program analysis techniques
to discover application vulnerabilities in banking apps. Prior work
has also studied compliance with industry standards governing
e-commerce websites [51] and mobile apps [37]; however, these
studies have not investigated payment SDKs specifically.

Security analysis of non-payment applications is well-studied.
Several lightweight static analysis scanners such as QARK [50],
Androbugs [5], and MobSF[38] test for common security weak-
nesses in Android applications. However, their lack of dataflow
analysis renders them either incapable of testing certain require-
ments or subject to high false alarm rates. Our work builds upon
the knowledge gathered over the past decade by researchers study-
ing Android application security. This work includes identification
of sensitive data leakage [7, 17, 18, 32], flawed implementations
of SSL/TLS [19, 20, 26, 41, 42, 49, 60], misuse of cryptographic
primitives [16, 31, 39, 52], and identification of vulnerable Web-
Views [14, 36, 40, 59].

While many of these efforts touch upon aspects of OWASP’s
MASVS [43] requirements (and may have indeed inspired some of
them), no prior work has sought to codify the MASVS requirements
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Figure 1: Overview of AARDroid analysis. The first phase
identifies the security relevancy of APIs and arguments in the
SDK, which are used by the dataflow analysis in the second
phase. The second phase provides a suite of tests derived
from OWASP’s MASVS-L2 requirements for SDKs.

into program analysis tests. MASVS is considered the canonical
definition of security-best practices for mobile application security.
However, the requirements themselves are written in natural lan-
guage, and while the accompanying Mobile Security Testing Guide
(MSTG) [44] provides some technical detail, applying MASVS to
an application is a largely manual process.

Threat Model: Failure to adhere to MASVS does not always imply
serious security vulnerability. For concreteness, our threat model
considers mobile applications accessing payment systems. Failure
to comply with PCI DSS represents a significant risk for payment
SDK providers and their customers. PCI DSS explicitly prohibits
saving specific types of credit card data on the device, sharing it
insecurely, or displaying it improperly. Historically, unnecessary
storage of sensitive payment information has exacerbated security
incidents (e.g., the Target security breach [11]). As such, we assume
the attacker can access all device storage by either gaining physical
access or installing malware. While different storage areas can be ac-
cessed more easily than others (e.g., SDcard storage is significantly
more exposed than the app’s private storage), PCI DSS does not
differentiate where highly-sensitive information is stored. If credit
card data is stored on the device, attackers targeting point-of-sale
devices running payment applications can steal this data for many
customers. For end-user smartphones, the attacker can distribute
malware that collects credit card data from many devices. Finally,
we assume both the SDK and application developers are benign.

3 OVERVIEW

The goal of our work is to enable automated analysis of security
weaknesses in payment SDKs for Android applications. While both
code security standards and program analysis tools exist for mobile
applications, applying them to SDKs is nontrivial, presenting the
following key challenges.

o Security standards and tools are written with applications in

mind. It is not always clear whether the end app developer
or the SDK developer is responsible for enforcing security
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requirements. Existing program analysis tools also assume
full application packages with well-defined entry points.

e Standards are written in natural language. They typically
reference technical artifacts at a high-level and do not pro-
vide procedures to programmatically validate an application
against the prescribed guidelines.

o The semantics of SDK application programming interfaces
(APIs) are not easily inferred. The knowledge of code entry
points and security sensitivity of variables is necessary to
verify program analysis requirements. Even if SDK docu-
mentation is available, such knowledge would need to be
extracted from natural language.

We propose a framework called AARDroid (Figure 1) to ad-
dress these challenges. AARDroid captures textual requirements in
MASVS as static analysis tests. Section 4 describes how we deter-
mined which requirements are relevant to SDKs, as well as the one-
time effort of how we translated the natural language requirements
into program analysis checks. We capture four categories of MASVS
requirements consisting of 28 checks: (1) data storage and privacy
(DS1-DS12), (2) cryptography (CRYPTO1-CRYPTO4), (3) net-
work communication (TLS1-TLS4), and (4) platform interaction
(PLAT1-PLATS). Our core analysis is built upon Argus-SAF [22]
(formerly Amandroid) to perform the dataflow analysis required
for five of the data storage and privacy checks. We also define a set
of Argus-SAF modules for verifying MASVS requirements that can
be expressed as syntax checks. Finally, we use CryptoGuard [52] to
evaluate most of the the cryptography and TLS requirements.

A key technical contribution of our work is the process of adapt-
ing Argus-SAF to perform dataflow analysis on SDKs without ac-
companying applications. Manually creating test applications for
each SDK is time consuming and error prone, particularly when
available SDK documentation is incorrect or not available. Sec-
tion 5.1 describes how AARDroid automatically creates wrapper
applications for each SDK and extends the program analysis to
create dummy edges from the application lifecycle methods in the
wrapper project to security-relevant APIs within the SDK.

Determining which SDK APIs and arguments should be linked
to the dataflow analysis is nontrivial. Section 5.2 describes how
AARDroid starts with all public methods using parameters that
are or contain strings (determined recursively). It further refines
the set using the names of methods, parameters, and class fields,
inferring the semantics with a domain-specific ontology adapted
from PolicyLint’s [4] ontology of data used by mobile app privacy
policies. While this refinement does not work for obfuscated SDKs,
over 80% of the payment SDKs we studied were not obfuscated.

We used AARDroid to automatically evaluate a set of 50 payment
SDKs against our 28 MASVS program analysis finding that 37 SDKs
fail to meet at least on MASVS Level 1 requirement. Section 6 dis-
cusses our manual investigation of the security weaknesses raised
by AARDroid. We found that our approach to adapting dataflow
analysis to SDKs resulted in few false positives. We also identified a
range of significant concerns, including saving unencrypted credit
card information to files, use of insecure cryptographic primitives,
insecure input methods for credit card information, and insecure
use of WebViews. These results demonstrate the value of applying
security analysis at the SDK granularity.
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4 INTERPRETING MASVS

OWASP MASVS is considered the canonical definition of best-
practices for mobile application security. It defines two primary
levels for compliance. MASVS-L2 (Level 2) is defined as appropriate
for applications requiring PCI-DSS compliance [47]. As with other
security standards, MASVS is written in natural language, typically
referencing technical artifacts at a high-level. While the accompa-
nying Mobile Security Testing Guide (MSTG) [44] provides some
technical detail, applying MASVS to an application is a largely
manual process. A key contribution is translating these natural
language requirements into automated static analysis checks.
MASVS organizes security requirements into multiple categories.
Overall, we implemented 28 MASVS checks for four categories:
Data Storage and Privacy (12), Cryptography (4), Network Commu-
nication (4), and Platform Interaction (8). The remaining categories
(Architecture, Authentication, and Code Quality) or checks were
either not feasible to identify using static program analysis, not in
the scope for payment SDKs, or too generic. The remainder of this
section describes our approach to encoding the requirements.

Data Storage and Privacy (DS): We use a series of checks to un-
derstand how an SDK stores sensitive data. The system credential
storage facility should be used when appropriate (DS1). External
storage should completely be avoided (DS2) for reading or writing
sensitive data, and it should never be sent to device logs (DS3).
Instead of storing sensitive information on the device, developers
should retrieve it from a remote server and avoid local persistence
(DS11). If persistence is needed, encryption should be used (DS12).
Furthermore, sensitive data should not be passed to any third party
APIs (DS4) or inter-process communication (IPC) (DS6). The above
checks largely use dataflow tracking and we discuss the identifica-
tion of sensitive data (taint sources) in Section 5. We also include a
number of configuration and syntactic checks. SDKs should disable
Android’s auto-backup feature (DS8), as it can persist data longer
than necessary. Many SDKs also include XML user interface layout
files to accept credit card input from the user. Our checks ensure
that sensitive data cannot be leaked through the UI (DS7) and UI
input cache (DS5). MASVS also suggests defense-in-depth measures
that are not mandatory but provide better security if implemented.
We include checks for disabling screenshots on sensitive Uls (DS9),
checking if device has set up a pass-code (DS10), and protecting
against screen overlay attacks (PLAT7).2 These checks automat-
ically determine if the SDK is querying specific Android API (i.e
isDeviceSecure()); however, they require manual inspection to
understand the context.

MASVS includes three requirements in this category that we did
not encode, as listed in Table 12 (appendix). MASVS 2.10 specifies
that applications should not persist sensitive data in memory longer
then necessary. It is not specified what is considered long, and
we only analyze usage of local storage but not system memory.
MASVS 2.12 requires applications to educate user about what data
is processed. MASVS 2.15 requires applications to wipe local storage
after excessive failed authentication attempts; however, this action
requires application context.

2We mention PLAT? in the data storage and privacy category due to its similarity to
other checks. MASVS categorizes it as a platform requirement.
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Cryptography (CRYPTO): Misuse of cryptographic primitives
is a well known category of software vulnerabilities. Several prior
works [16, 31, 39, 52] have shown that Android application de-
velopers continue to make these mistakes. AARDroid captures
the MASVS cryptography requirements as follows. AARdroid en-
sures hard-coded or predictable cryptographic keys are not part
of the SDK code (CRYPTO1) and proper cryptography configu-
rations are used (CRYPTO2). Insecure configurations include in-
sufficient key length, insecure modes (e.g., ECB Mode), predictable
or static IV in symmetric ciphers, and insufficient number of iter-
ations in PBE. MASVS also prohibits usage of deprecated crypto-
graphic algorithms (CRYPTO3), including DES, IDEA, BlowFish,
RC4, RC2, MD5, MD4, MD2, and SHA1. Finally, AARDroid checks
if random number generators are correctly chosen and configured
(CRYPTO4). The full list of checks is provided in Table 9 (appen-
dix). Since CryptoGuard [52] already captures all four of these
requirements, AARDroid simply adopts it into the analysis pipeline
rather than reimplementing its logic. The remaining MASVS re-
quirements in this category include self-implemented cryptogra-
phy (MASVS 3.2) and using the same key for multiple purposes
(MASVS 3.5). As these requirements require semantic knowledge
of the application or SDK functionality, we did not include them.

Network Communication (TLS): HTTP and HTTPS are the
de facto means of network communication for Android applica-
tions. Despite Android providing safe defaults, prior research [19,
20, 26, 41, 42, 49, 60] continues to identify Android applications
that misconfigure TLS. AARDroid captures the MASVS network
communication requirements (Table 10 in appendix) as follows.
First, it ensures that only TLS network connections are used by
the SDK (TLS1). Any URLs specifying the http scheme are flagged.
AARDroid also ensures proper TLS configuration (TLS2) and that
endpoint certificates are properly validated (TLS3). It detects if spe-
cific methods in the SSLSocketFactory class and TrustManager
interface are improperly implemented. Finally, AARDroid checks
for certificate pinning (TLS4) as a defense-in-depth requirement.
It captures both the legacy approach using TrustManagerFactory
and the recent approach using NSC file methods for TLS certificate
pinning. With the exception of TLS4, all the checks use Crypto-
Guard [52], as we are already running CryptoGuard for the cryp-
tography tests. We did not evaluate MASVS 5.5, as it relates to
account enrollment and account recovery, which is usually not a
feature of payment SDKs. We also did not include a check for the
versions of the SDK’s dependencies (MASVS 5.6) as that would
require profiling a large dataset of dependencies.

Platform Interaction (PLAT): The MASVS platform category
specifies a collection of requirements to ensure Android’s feature-
rich runtime environment is used securely. First, the SDK should not
ask for unnecessary permissions (PLAT1) as the permissions in the
SDK manifest file propagate to the application. Next, the SDK should
not export sensitive functionality through IPC (PLAT3) or cus-
tom URL schemes (PLAT2). SDKs embed WebViews for accessing
web content (e.g., for payment transactions). WebViews are a well-
known attack surface [14, 36, 40, 59]. Any use of a WebView should
be combined with security-conservative configuration, including
disabling JavaScript (PLAT4), specifying a minimum set of protocol
handlers (PLAT5), not exposing a JavaScript bridge (PLAT6), and
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clearing web cache before closing (PLAT8). AARdroid performs
these checks using syntax analysis. These checks are listed in Ta-
ble 11 (appendix). We do not capture input validation (MASVS 6.2).
If user input is sent to a network service, it should be checked
server-side. Local injection attacks can only occur if the SDK uses
an SQLite database, which none of our studied payment SDKs do.

5 ENABLING SDK DATAFLOW ANALYSIS

Dataflow analysis of Android applications is a well-studied prob-
lem. Most recent work builds upon either FlowDroid [7] or Argus-
SAF [22] (formerly known as Amandroid), because they capture
many aspects of the Android application life-cycle, components,
and other framework-specific interfaces. Unfortunately, both Flow-
Droid and Argus-SAF assume they are analyzing a . apk file. This
assumption is deeper than the packaging and filename: renaming
a .aar file as .apk is not sufficient. Both tools use the semantics
of Android component objects (e.g., activities) when construct-
ing dataflow graphs. Furthermore, the sources and sinks for their
dataflow analysis uses well-known Android framework APIs. Nei-
ther assumptions holds true for the studied payment SDKs. This
section describes how we overcame these analysis challenges.

5.1 SDK Analysis

The goal of this subsection is to adapt Argus-SAF to perform a
dataflow analysis of the .aar Android Archive file of an SDK. The
trivial approach is to manually create an application project for each
SDK, including the .aar file and using the available documentation
to write code that exercises the SDK functionality. However, this
approach as several shortcomings. First, it does not scale. Section 6
studies 50 SDKs, and manually creating this many applications
would be very time consuming. Second, we found the documen-
tation for some SDKs to be very poor, if it is available at all. We
did not want to limit our analysis to only those SDKs with clear
documentation. Third, even when documentation is available, it
may be incorrect or incomplete. In such cases, our analysis may
miss APIs used by real applications.

AARDroid automatically constructs . apk files by combining each
.aar SDK file with a simple template Android application project.
While the dataflow results for the .apk will include several default
Android libraries (e.g., android and androidx), these can be easily
filtered out using package names. The more difficult challenge is
ensuring the code for the SDK under test is included in the dataflow
analysis. Argus-SAF performs dataflow analysis by first construct-
ing interprocedural control flow graphs (ICFG) using points-to
analysis and then using def-use analysis to derive an interprocedu-
ral data dependency graph (IDDG). Dataflow analysis is performed
by traversing the IDDG. The ICFG analysis begins from predefined
entry points in an application (e.g., the onCreate() of an activity
component). If the code in the SDK is not called by the application
template, it will not be included.

We modified Argus-SAF to insert dummy call statements to SDK
APIs into the intermediate representation (IR) before constructing
the ICFG. The structure of the generated IR code for the dummy API
calls depends on different API access modifiers. For example, the
object of the corresponding class is included as the first parameter
in the IR code for non-static functions but not static functions.
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Our implementation is configurable using an input file generated
by the analysis described in Section 5.2. Next, Argus-SAF defines
timeouts for each component (rather than the application as a
whole). To ensure the API invocations do not impact one another,
we encapsulate each API call of interest in its own component
instance (e.g., activity component). We did not encapsulate multiple
API calls in a single component, because we found that doing so
can result in analysis time-out, skipping the subsequent calls.

Another challenge for instrumenting dummy calls was initializ-
ing the API parameters with only the context of the function pro-
totype. Dummy calls without parameter initialization can prevent
Argus-SAF from including the call in the IDDG used for dataflow
analysis. For complex objects, this initialization needs to be per-
formed recursively. Given the poor and limited documentation for
many studied SDKs, automating initialization was infeasible. For-
tunately, Argus-SAF does not require parameter initialization for
dataflow analysis f the call is a taint source. Therefore, we annotate
each API call as a taint source to avoid this limitation.

SDK APIs also sometimes have dependencies upon one another.
For example, method f;(-) may take the string of a credit card
number and return an object 0. The SDK may be designed such
that o should be passed to another method f3(+), which performs a
vulnerable execution involving the credit card number. We avoid
the need to consider such dependencies by recursively determining
the semantics of taint sources, as discussed in Section 5.2. That is,
our approach allows us to consider each API call in isolation.

5.2 Identifying Relevant APIs

Dataflow analysis requires knowledge of taint sources of interest.
Simply creating dummy calls to all APIs in the SDK is likely to
result in long analysis times and very noisy results. We refine the
set of APIs in two ways. First, since sensitive payment information
is primarily string data, we recursively determine which APIs take
strings as arguments. Second, we further refine and semantically
annotate the APIs and their parameters by considering their names.

5.2.1 ldentifying APIs Consuming Strings. Payment information
such as credit card numbers and CVC codes are commonly stored
as strings within applications and SDKs. Strings may be passed
directly as a String object or indirectly as a String object that is
nested within another object. We refine the set of relevant APIs by
identifying which ones directly or indirectly consume a string.
We identify string consuming APIs by using ASM [8] to generate
and traverse the abstract syntax tree (AST) of the SDK binary. Our
algorithm determines the set of relevant methods R by iteratively
inspecting each public method in the AST, as apps can only call pu-
blic methods in the SDK. We traverse the AST using a breadth first
search. For each method m, we inspect all parameters p individually.
If a parameter p is a String, m is added to R along with the relevant
parameter index. If a parameter is an object, we expand the object,
inspecting all member variables of the class and the super class. If
a member variable is a String, m is added to R with the relevant
parameter index and member variable. If a member variable is an
object, we repeat the process, recursively resolving objects to find
String variables. Thus a method m is added to R with information
on which of its parameters {p} are String or an object containing
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String. We need to keep information about the API parameters for
precise taint tracking.

We exhaustively search all parameters for String variables. First,
we need to identify all possible taint sources. Second, we need
to extract the name of the variable for the semantic resolution
completed by the second phase of our refinement.

5.2.2 Determining Security Semantics. Refining the set of APIs
to only the set that consumes strings still produces very noisy
dataflow analysis results, as confirmed by tests with a handful of
the SDKs studied in Section 6. Therefore, AARDroid uses the names
of relevant methods and their String variables to further refine
the set of taint sources. Assigning semantics to names serves two
purposes. First, it eliminates sources that are not relevant to our
security analysis. Second, it differentiates the sensitivity of data. For
example, storing a credit card number to a file is a higher security
risk than storing the user’s name (see Section 5.3).

One disadvantage of this approach is that it does not work well
for obfuscated SDKs. Fortunately, 41 of the 50 SDKs studied in
Section 6 were not obfuscated. We were unable to perform the
dataflow checks for the nine obfuscated SDKs.

Name Extraction: We extracted the names of methods, parameters,
and member fields during AST traversal (Section 5.2.1). Method
names and field names are present in the descriptor of that element.
However, extracting method parameter names required further
parsing of the SDK binary. Method parameter names are present in
the constant pool section of the binary only if the SDK is not built
with specific build flags. Of the 50 SDKs studied in Section 6, only
the nine obfuscated SDKs used these build flags.

Method vs. Parameter Names: Our filtering prefers parameter
names over method names. We found that method names tend to
be more ambiguous and long, requiring more textual analysis than
parameter names. We also found that parameter names more fre-
quently describe the data of interest. For example, consider the API
prototype public void processTransaction(String creditCardNu-
mber). Resolving “processTransaction” requires additional context
to determine the type of “transaction” In contrast, “creditCardNum-
ber” is clearly payment information. In general, we found many
method names to be too generic (e.g, process(), isValid(), onCrea-
te(), onSuccess(), init()). Along with parameter names, we also
used recursively derived names of String fields within objects.

Ontology Adaption: Data ontologies are commonly used to re-
solve the semantics of a word. We started with the PolicyLint [4]
ontology, which was generated by combining the subsumptive rela-
tionships extracted from the privacy policies of over 10,000 Android
appliations. This ontology provides a hierarchical structure of is-a
relationships between two data objects (e.g., a “credit card number”
is a “payment information”). The PolicyLint ontology has 459 in-
ternal nodes (e.g., “credit card security code”) and 3,235 leaf nodes
(e.g., “cvv code,” “cvv,” “card cvv”).

We evaluated the suitability of the PolicyLint ontology using
the parameter names of all public APIs within the non-obfuscated
SDKs in our dataset. To assess suitability, we extracted the param-
eter names from all 41 SDKs and then manually removed names
that were obviously irrelevant, e.g., parameter names consisting

» &«

of arbitrary letters or words (e.g., “arg,” “var,” “value,” “param”)
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or variable names that do not describe sensitive information (e.g.,
“level,” “attribute,” “activity”). Next, we calculated what percentage
of the refined list exists in the data ontology. While most of the
refined parameter names (74%) were captured, we systematically
extended the PolicyLint ontology by adding 492 leaf nodes. Our

final ontology consisted of 3,727 leaf nodes.

5.3 Capturing MASVS Dataflows

Each MASVS dataflow check requires identifying tainted paths
from API sources to specific sets of sinks. AARDroid uses two types
of dataflow analysis. DS3, DS4, DS6, and DS11 all use a tradi-
tional form of taint tracking to determine if sensitive data passed
to relevent API makes its way to specific sinks (e.g., Log classes).
However, other checks require finding invocation of an interme-
diate method along the path to the taint sink. Specifically, DS12
requires identifying a data encryption method (Cipher.doFinal())
along the path data storage. We capture this path-constraint on the
dataflow using technique similar to Cardpliance [37].

Many of the MASVS requirements only apply for highly sensi-
tive data types. We use our adapted PolicyLint ontology to classify
sensitivity. To define sensitivity, we needed to determine at what
granularity to consider is-a relationships. For example, “credit card
number” and “card expiry date” are both children of “payment in-
formation.” However, “card expiry date” is not as sensitive as “credit
card number” or “cvc.” Therefore defining “payment information” as
highly sensitive fails to make this distinction. In contrast, there are
too many leaf nodes to manually classify. In the end, we choose the
parents of the leaf nodes to be a reasonable classification level. Our
ontology included 170 such nodes, which we manually classified
into high, medium, and low.

We defined highly sensitive information to be information such
as credit card numbers, CVC, bank account numbers, SSN, passport,
biometrics, TIN, and user credentials. We defined medium sensitiv-
ity to be information such as phone number, account information,
IMEI, contact information, and date of birth. We defined low sen-
sitivity to be the remaining values, including information such as
URL, device information, country, city, and gender. Table 13 in the
appendix lists our categorization.

6 EVALUATION AND RESULTS

Given that payment SDKs are integrated into thousands of apps,
security weaknesses could impact millions of users. This section
first describes how we identified our dataset. We then evaluate
AARDroid’s accuracy using manual validation. Finally we present
our key security findings and supporting evidence.

6.1 Experimental Setup

Dataset: There is no centralized distribution platform for mobile
app SDKs. However, Google Pay [27] and Apple Pay [6] allow many
payment service providers to incorporate their service in addition
to credit card payments. The documentation for Google Pay and
Apple Pay gave us a combined list of 145 PSP names. However,
many of these PSPs are only supported for web and not mobile.
Many of the 145 PSPs simply used Google Pay’s tokenization facility
rather providing their own SDK for credit card processing. Many
PSPs did not have SDKs publicly available on their website.
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Figure 2: Reduction (percentage) of API count after applying
filtering algorithm that incorporate the data ontology for
the 41 SDKs without obfuscation.

In total, we gathered 50 Android payment SDKs from either
GitHub or an artifact repository (e.g., JCenter, Maven) referenced
from the PSP website. These 50 SDKs were collected during Sep-
tember and October 2020. Of these 50 SDKs, we could not extract
the API semantics for nine SDKs, which limits the dataflow analy-
sis. Additionally, 24 SDKs did not define a user interface and only
processed payment data passed on from the application.

Analysis Runtime: Our analysis was run on a Apple MacBook
Pro (2017) with a 3.1 GHz Dual-Core Intel Core i5 processor and
16 GB 2133 MHz LPDDR3 RAM running macOS Big Sur (Version
11.1). The analysis was run on each SDKs sequentially without
parallelization. In total, the analysis of 28 MASVS checks on the 50
SDKs took 6 hours and 22 minutes. The average runtime per SDK
was under eight minutes.

6.2 Sensitive API Identification

API Reduction: We compared the number of identified sensitive
API sources before and after using ontology-based filtering (Sec-
tion 5.2). Due to the linear relationship between analyzed APIs
and runtime, this reduction also impacts the performance. Figure 2
shows the distribution of reduction. The number of initial APIs
ranged widely from 6 (sberbank) to 588 (dotpay).

Accuracy: We selected five (*12%) of the unobfuscated SDKs to
measure the accuracy of our sensitive API identification heuristic.
For each SDK, we determined if the APIs filtered out by the heuris-
tic are non-sensitive. As shown in the false negative (FN) column of
Table 1, 14 of the total 97 API of the inspected dataset were incor-
rectly eliminated. One source of false negative was passing sensitive
data using generic names (e.g., input). We also found SDK-specific
clauses being used as parameter names (e.g., squareMerchantld).
In the set of studied SDK, we found there were no zero-argument
APIs performing sensitive functionality. Finally, of the 37 candidate
API that were marked as sensitive, only 5 were not sensitive (false
positives). The false positives resulted from the use of sensitive
words (e.g., code, id) to pass insensitive values to functions.

6.3 Detection Accuracy

We evaluated the accuracy our MASVS checks by manually inspect-
ing the raised alarms. Given that a key contribution of this paper is
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Table 1: Accuracy of sensitive API identification

Total API Count API
SDK | apr |FN| After | poguction | T | FF
Filtering
redsys 15 0 9 40% 7 2
simplify 18 3 8 55% 8 0
tranzzo 26 2 9 43% 7 2
square 30 6 5 84% 4 1
payjp 47 3 6 88% 0 0

Table 2: Tool positive and true positive of different Code and
XML checks that require identification of specific primitives.

Check DS1 | DS2 | DS5 | DS7 | PLAT2 | PLAT3
Reported 12 9 3 16 2 3
True Positive 12 7 1 10 2 3

Table 3: Tool Positive and True Positive for checks in Crypto
(CR) and TLS category performed by CryptoGuard.

Check CR1 | CR2 | CR3 | CR4 | TLS1 | TLS2 | TLS3
Reported 5 2 13 6 1 6 6
True Positive 1 2 11 2 0 0 0

the dataflow analysis and that we rely on CryptoGuard for cryptog-
raphy checks, a key focus of our evaluation is the accuracy of the
dataflow analysis. For the dataflow analysis, we measure accuracy
at the SDK level for each sensitivity level (high, medium, and low).
That is, we did not manually inspect every reported data flow path,
as this was sometimes in the thousands. A summary of our analysis
results after manual inspection is shown in Table 7 (appendix).

Manual Validation Process: We manually reviewed the SDK
code to determine whether each raised alarm was a true or false
positive. Integrating the SDK into a test application was infeasible
for a variety of reasons, including a lack of documentation and
the ability to perform real transactions. The manual validation
was performed by three of the authors of the paper, each having
sufficient academic and industry experience in Java and Android
programming. Each validation was performed by one author, cases
deemed ambiguous were resolved by a group discussion. We used
a combination of the JD-GUI [28] and FernFlower [23] decompilers
to obtain the Java code of SDK binaries.

The validation process depended on the type of program analysis
check. For code syntax checks where presence of a primitive with
particular properties is problematic (e.g., setJavaScriptEnable(tru-
e)), we confirmed if that primitive is actually present, and if it could
be invoked from a public API. AARDroid also has a few checks
that parse specific properties of UI widgets (e.g., EditText) in layout
files. However, Ul widget properties can also be set on the encap-
sulating View object in Java code, which was out of scope of our
analysis. For validating these checks, we inspected the XML layout
code and rendered it in the Android emulator (when possible). We
also inspected the Java code referencing objects for any additional
properties. When validating CryptoGuard’s identification of cryp-
tographic API misuse and TLS vulnerabilities, we examined the
security context of the offending code to verify its reachability.

Our validation process for MASVS checks requiring dataflow
analysis was slightly different. Unlike code syntax analysis where
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the tool reports in which file the vulnerable API is present, dataflow
analysis reports all the data flows associated with a specific API
sink. In some cases we found thousands of such instances for which
manual validation was infeasible. If there was at least one true
positive flow for an SDK for a given sensitively level, we reported
AARDroid as having a true positive for that sensitivity level.

For each inspected dataflow, we first considered the semantics
linked to the API source to determine if the data sensitivity (i.e.,
high, medium, low) reported by AARDroid was accurate. This step
evaluates ambiguity due to the data ontology (e.g., due to generic
terms such as key, data, account). We then traced through the source
code to determine if the path reported by AARDroid exists. If any of
the identification was incorrect, we marked the flow as erroneous
and moved on to validating the next. We note that validating DS4
was slightly different than the other dataflow checks, as it required
also validating if the sink is third party.

Results: Table 4 presents our results for the dataflow checks, group-
ing alarms by sensitivity and reporting a true positive if there
eixsts any dataflow for that sensitivity. In total, AARDroid reported
51 dataflow alarms across 17 payment SDKs. We identified five
false positives, which resulted from misclassification of ambigu-
ous parameter names (e.g., “account” was interpreted as financial
account information) and incorrect identification of third party
URLs. For this SDK-level measurement, AARDroid’s dataflow-based
checks had greater than 90% precision. Tables 2, 3, 5, and 6 report
AARDroid’s accuracy for the non-dataflow checks.

6.4 Security Weaknesses

MASVS defines two primary levels of requirements: L1 and L2.
L1 is the bare minimum for mobile application security. MASVS
specifically states that L2 is appropriate for payment applications
seeking to meet PCI-DSS requirements. While we expected that
SDKs would not meet defense-in-depth requirements, we expected
payment SDKs to meet bare minimum requirements. However, we
found that of the 50 payment SDKs, 37 failed to meet at least one
MASVS-L1 requirement.
Our study identified the following key findings.

e 3 SDKs save unencrypted sensitive financial information
such as credit number and CVC to either persistent storage
or device logs. A fourth SDK stores a CVC in encrypted form.
PCI-DSS standards prohibit such storage.

e 11 SDKs rely on outdated cryptographic primitives for sensi-
tive functionality.

e 10 SDKs do not follow industry standards for taking credit
card data from users.

o 26 SDKs use WebViews, of which 20 allow JavaScript, 8 allow
the JavaScript bridge, 23 allow local file access, and 21 do not
clear the WebView cache. These uses of WebViews introduce
an unnecessary attack surface.

This section discusses the MASVS failures in detail. Table 7 (ap-
pendix) provides an overall picture of the MASVS failures. Figure 3
(appendix) shows the number of SDKs failing each test.

6.4.1 Data Storage and Privacy Violations. We categorize the MASVS
Data Storage and Privacy requirements into three types of failures:
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Table 4: Results of Data Flow checks for Data Storage and
Privacy requirements. A (V') on a cell means that MASVS
requirement has been violated or True Positive. (X) means it
was reported by the tool but is False Positive.

PSP DS-3 DS-4 DS-6 DS-11 DS-12
H[M|L [H[MJL|[H[M[L|[H[MJ[L [H][M]JL

bluesnap v v/ X

cardconnect | vV

computop X v

datatrans v 7

dotpay v v Y v v VIV vV

eghl v

eway v

ingenico v v X X X

paragon v v

paymentwall v

payu v v

platon v v v v

razer v

stripe v v

tappay v v v v v v

wepay v v Y v v

xpay v v

sensitive data persistence, improper Ul design, and lack of defense-
in-depth measures.

Sensitive Data Persistence: Table 4 overviews the results of the
five dataflow checks. Overall, our tool reported 17 distinct SDKs
persisting data with different sensitivity levels.

Payment SDKs inherently process sensitive data, therefore the
necessity of any such data persistence should be questioned. PCI-
DSS strictly prohibits persistence of sensitive authentication data:
“PCI-DSS 3.2: Do not store sensitive authentication data after autho-
rization (even if it is encrypted)” For DS11 (data persistence) and
DS12 (encrypted data persistence), we found six SDKs persisting
data locally, two of which were highly sensitive. For example, Dot-
Pay SDK writes credit card number and merchant ID in Shared
Preference unencrypted. It also writes the CVC, but uses RSA en-
cryption for doing so, as shown in Listing 1 in the appendix. Not
only is storing an encrypted CVC a violation of PCI-DSS, it uses
an 1024-bit RSA key, which is deprecated. To make matters worse,
Listing 2 in the appendix shows how the SDK stores both the pub-
lic and private key in Shared Preferences, allowing an attacker to
retrieve the private key to decrypt the CVC. Overall, the DotPay
SDK violated four MASVS requirements: DS1, DS11, DS12, and
CRYPTO2.

Logging of sensitive data (DS3) was a more frequent practice
than local storage persistence. We discovered a range of logged sen-
sitive data, including credit card numbers, CVC, IMEIL public keys,
payment tokens (e.g., for Google Pay, Samsung Pay, Merchant’s
PayPal), MAC addresses, and URLs. In total 14 SDKs log critical
data in ways that suggest that developers are unaware this is an
insecure practice. For example, we found that users’ credit card data
(e.g., credit card Number, CVC, and expiry date) was recorded in
device logs when (1) updating text fields [CardConnect], (2) updat-
ing databases [Dotpay], (3) initiating server requests [Paragon] and
(4) potentially handling exceptions [WePay]. We did not identify
any true positives for DS4 (third-party leak) and DS6 (IPC leak).

The checks not involving dataflow also uncovered several inter-
esting findings. We found seven instances where data was accessed
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from external storage (DS2). Although the read data was not sen-
sitive, reading from insecure storage puts the application at risk.
Interestingly, we found that in many cases these reads were invoked
by external libraries integrated within the SDKs. Next, we found
that only three SDKs turned off Android’s automatic backup of
user data (DS8). Android automatically backs up user data, which
could potentially leak if sensitive data is persisted or logged. As we
discuss in Section 7, feedback from many SDK vendors indicate that
they consider this requirement as the application’s responsibility,
and hence a gray area for classification as a security weakness.
We also found that 12 SDKs use the software implemented Java
KeyStore facilities for various purposes (e.g., storing certificates,
storing RSA keys), however, no SDKs use the Android Keystore
(DS1). Software implemented key stores persist credentials on app
storage and could be vulnerable [24]. In contrast, the Android Key-
Store provides better security by storing keys within specialized
hardware (if available).

Improper Ul Design: We found 26 SDKs provide a Ul for accepting
credit card numbers from users. Payment SDK developers should be
aware of industry policies and regulations associated with designing
a payment UI [43, 45, 47].

MASVS defines guidelines (DS5, DS7) for Ul design, primarily to
address shoulder surfing. DS5 includes turning off keyboard auto-
suggestion so that credit card numbers do not accidentally pop
up. In Android, auto-suggestion is turned off by default for number
fields; however, this default does not apply if the input method is
set to text. We found the JudoPay SDK takes credit card number as
text, and fails to turn off keyboard suggestions, which could result
in leaking credit card numbers through the keyboard cache.

The MASVS requirements (DS7) also specify that if sensitive data
is taken as input, it should not be exposed (e.g., to prevent shoulder
surfing). While PCI-DSS is not clear whether or not CVC codes
should be masked, MASVS descriptions imply it should [43, 45]. We
found that even widely used payment SDKs such as Stripe fail to
mask the CVC code up on entry. PCI-DSS requires credit card fields
to partially or fully mask the credit card number before displaying.
It is unclear if this requirement applies for user inputs. Many of the
SDKs we reviewed did mask the credit card number during entry.
However, from usability perspective one might argue displaying
the full number during entry is desirable. Therefore, our tables do
not include not masking it during entry as a security weakness.

AARDroid identified 16 SDKs with a UI privacy issue for either
the CVC, credit card, or both. We determined three of those were
false positives for improper identification. Of the remaining SDKs,
four had only the CVC field displaying the numbers after input,
three had only the credit card field taking input without masking
any part of it, and six had both. However, we conservatively mark
not masking credit card numbers as false positives as mentioned
above. The remaining 10 SDK displaying CVC cases are points of
concern.

Lack of Defense-in-Depth Measures: MASVS proposes a set of
defense-in-depth measures for added security for sensitive applica-
tions. Disabling screenshot when the Ul is taking sensitive input
(DS9) can prevent leaking data to malicious services on rooted
devices [12] or adb enabled device without root access [33]. An-
droid also uses a screenshot-like feature when the application is
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backgrounded for use in the recent applications menu. We found
only two SDKs (ACI and WireCard) have a UI that implements
screenshot disabling, while the other 24 remain vulnerable to such
sophisticated data leak attacks. None of the payment SDKs con-
sider the device access security policy requirement (DS10) or take
preventive measures against screen overlay attacks (PLAT7).

6.4.2 Cryptography violations. AARDroid reported that 5 SDKs
use hard-coded keys (CRYPTO1), 2 use wrong configurations
(CRYPTO2), 13 SDKs use deprecated algorithms (CRYPTO3), and

6 SDKs use insecure pseudo-random number generators (CRYPTO4).

We manually inspected the corresponding code to understand the
context in which these cryptographic primitives are used. The re-
sults of this manual inspection is reported in Table 3.

Of the six SDKs using insecure random number generators
(CRYPTO4), only the Datatrans and CardConnect SDKs use them
for sensitive operations (e.g., initializing payment objects). Addi-
tionally, only the CardConnect SDK violates CRYPTO1 by using a
hard-coded key in symmetric (CBC) encryption decryption schemes.
The other instances were false positives, mostly due to finding no
usage of the code. Both of the CRYPTO2 checks (misconfiguration)
were true positives, including using a 1024-bit RSA key (DotPay)
and insufficient iteration count for PBE (WireCard).

We found 11 true positive instances of deprecated cryptogra-
phy (CRYPTO3). These instances primarily involve the use of DES,
Blowfish, SHA1, and MD5. From our verification, all cases are reach-
able through the code. Eight of the instances relate to hashing and
integrity. The remaining three directly relate to encryption.

The use of MD5 or SHA1 to hash payment and merchant infor-
mation is prevalent throughout the findings. Both are deprecated
due to collisions. This use is especially concerning for financial
transactions, which are both highly sensitive and unique. While
exploitable collisions for SHA1 are relatively recent, MD5 has been
shown to be completely compromised for quite some time [30, 64].
The Tpay, WePay, Platon, and Yandex SDKs all use MD5 hashes
for sensitive information. Platon uses it for all encrypted returns.
SHA1 is used for similar sensitive transactions.

Two SDKs use DES for sensitive encryption. In the Paypal SDK,
the use of DES is alongside other more robust cryptographic meth-
ods. Presumably the DES support exists for legacy purposes. How-
ever, the code is still reachable. Finally, the Wirecard SDK uses
both MD5 and DES. Specifically, it obfuscates shared preference val-
ues using PBEWithMD5ANdDES. Just as concerning, ANDROID_ID is the
source of randomness for key generation. Listing 3 in the appendix
displays this functionality. This finding raises multiple concerns.
First, both MD5 and DES are insecure algorithms. Additionally, PBE
is configured with 20 iterations, well below the suggested 1000.

6.4.3 Network communication violations. AARDroid reported that
one SDK uses HTTP (TLS1), six SDKs have improper TLS configu-
ration (TLS2), and six SDKs do not properly validate certificates
(TLS3). However, as reported in Table 3, our manual inspection
identified that the context in which the corresponding code was
used could not directly be attributed to a vulnerability.

One SDK uses http (TLS1), but the connection is used for insensi-
tive purposes. The same six SDKs violate both TLS2 and TLS3, and
for each SDK the same code triggers both alarms. Specifically, the
SDKs use a custom X509TrustManager implementation that (1) does
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Table 5: No SDK using WebViews was configured properly.
JS Enabled | JS Bridge | Cache not Access Flags Enabled (PLAT5)

Property (PLAT4) enabled Cleared Universal File access
(PLAT6) | (PLAT7) | File | Content | Access -
. from File
from File
Reported 23 8 26 23 23 1 0
Validated 20 8 21 23 23 1 0

not throw a CertificateException in the check(Client/Server)Tr-
usted method, and (2) fails to default to known certificate author-
ity lists in getAcceptedIssuers. A custom X509TrustManager imple-
mented as such will accept all certificates.

We determined all six pairs of TLS2 and TLS3 are false positives
due to various mechanisms prevent exposure at default configura-
tion. For example, to be vulnerable the CyberSource SDK would
need an Android SDK level less than 10; however, the SDK mani-
fest specifies a minimum SDK level of 14. On the other hand, the
Paragon SDK hard-codes an internal boolean variable as true, which
prevents the vulnerability. The other four SDKs are not vulnerable
to similar types of configuration.

While we mark these alarms as a false positives, it is theoretically
possible for an application developer to introduce a configuration
that causes the TLS connections to be vulnerable. For example, the
Paragon SDK code includes a public setter method that allows the
application developer to disable the TLS checks. For the Cyber-
Source SDK, a developer could force an SDK version less than 10,
causing TLS connections to be vulnerable. Similar types of mis-
configuration would cause the TLS connections of the other four
SDKs to be vulnerable. However, rather than assume developer neg-
ligence, we conservatively classify these alarms as false positives.

Finally, TLS4 checks certificate pinning, which is an enhanced
security feature to prevent on-path attacks. We found that only 12
SDKs adopt this defense-in-depth approach.

6.4.4  Platform Interaction violations. We categorize the MASVS
platform interaction requirements into three types of failures: mis-
configured WebViews, excess privileges, and insecure IPC schemes.

Misconfigured WebViews: Android WebViews present a well-
known attack surface if they are not configured securely [14, 36, 40,
59]. None of the 26 SDKs using WebViews configure them according
to MASVS standards (Table 5). In most cases the purpose of the
WebView was trivial (e.g., checkout or confirmation of payments).
JavaScript execution within WebViews is turned off by default
to mitigate a class of web attacks [9, 36]. However, we found 20
SDKs explicitly enable JavaScript (PLAT4). In the offending SDKs
for which we could extract the URL, we found that all pages loaded
without JavaScript but raised errors warning of insufficient data.
We manually inspected the loaded JavaScript for these pages and
concluded that the JavaScript renders Ul elements and handles
sensitive data such as phone and credit card numbers. Eight SDKs
enable the JavaScript bridge, which allows the JavaScript execut-
ing in the WebView to execute Java methods within the SDK.
Five of these SDKs do not restrict navigation by implementing
shouldOverrideURLLoading(). The bridge was used to receive
status on the payment confirmation (e.g., was the payment com-
pleted). However this breaks Android’s WebView sandboxing [36]
and is considered insecure (PLAT6). Providing a native Android
user interface instead of using WebViews would mitigate this.
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Table 6: 16 dangerous permissions requested by 9 SDKs

Permission External Location | Camera Phone | Record | Call Get
Storage State | Audio | Phone | Accounts
Reported 6 2 2 2 2 1 1
Used 5 2 2 2 1 0 0

By default, WebViews are granted file access privileges, allowing
access to all files the application can access (including external
storage), potentially exposing the SDK to known attacks [14]. We
found only 3 of the 26 SDKs using WebViews restrict file access.

Finally, 21 of the SDKs with WebViews (16 of which have JavaScript
enabled) do not clear the WebView cache when the WebView is
closed (PLATS8). Not clearing the cache may leave sensitive infor-
mation (e.g., WebView cookies) in memory longer than necessary.

Excess Privileges: Overprivileged applications are a recognized
and prevalent concern for Android applications [21, 25, 54, 62]. Our
tool examines SDK manifests to identify when permissions with the
“dangerous” protection level are assigned. We manually determined
if the permission is needed by locating Android API calls requiring
target permissions. We found 16 dangerous permissions across
the manifests of 9 SDKs. Four had no identifiable use within the
decompiled SDK and are therefore considered to not be needed by
the SDK. Of the 12 remaining, six appear to stem from libraries,
although these are used. These results are shown in Table 6.

Insecure IPC or URL Schemes: We found three SDKs include
exported Android components, primarily for checkout activities.
Two of these define a custom URL scheme. There are two types of
URL schemes used by exported components: app links and deep
links. App links use https or http schemes and the domain is ver-
ified by the platform (e.g., https://www.example. com). Therefore
when such URLs are triggered, the platform knows which applica-
tion to launch. However, deep links use custom schemes and are
not verified (e.g., custom://www.example.com). Therefore, deep
links are at risk of hijacking, as one application can freely register
another application’s schemes [34] and the platform would let the
user to choose between multiple options. We found both of the
SDKs use deep links on sensitive components. Neither validate the
input, which could make them vulnerable.

7 DISCUSSION

Limitations: AARDroid inherits the fundamental limitations of
static program analysis. The tests include a combination of precise
dataflow analysis and coarser-grained syntax-based heuristics. The
MASVS requirements themselves are often heuristical in nature,
implying“security weaknesses” rather than explicit vulnerabilities.
Our encoding of the MASVS requirements into program analysis
checks was best effort, and our implementation is incomplete in
some ways (e.g., identifying networking libraries). Our approach of
identifying sensitive APIs in SDKs relies on successful extraction
of the API semantics, which are not always available. Our semantic
inference for taint sources does not consider APIs that take no
parameters. For example, an SDK could store sensitive data in a
global or member variable that is used by a no-parameter API called
directly by the application. We did not identify any such cases in
the five SDKs studied in Section 6.2.
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Our current implementation also relies on a domain-specific
data ontology generated from studying privacy policies, which
we further adapted for payment SDKs. While we experimentally
found the ontology to be sufficient, we can not make claims about
its completeness. Finally, implementation for resolving UI input
semantics was limited to credit card data only. A generic tool could
adopt sophisticated UI analysis tools [3].

Responsible Disclosure: For each of the 50 SDKs, we searched
websites and SDK repositories for contact email addresses for de-
velopers. Contact information was unavailable for four SDKs. We
emailed the remaining 46 SDKs, identifying the the SDK name,
SDK version, source, timeline and the MASVS violations. For each
MASVS violation, we reported where the violation occurred and
why it was a violation with reference to the MASVS document.
We received 27 acknowledgements of receipt, although 13 were
auto-generated. Of the 14 non-auto-generated responses, 7 vendors
claimed to pass the message to their engineering team internally for
further investigation, 1 claimed to release patches, 1 claimed the vi-
olations less severe, and 1 claimed the SDK version was deprecated
and informed affected merchants.

The remaining four vendors provided additional feedback on
our findings. Although some findings were clear security violations
(e.g., persisting sensitive data), some requirements were disputed
by the vendors about their applicability. One vendor claimed some
of the findings (e.g., not masking CVC) were intentional business
decisions. A few vendors disagreed that the SDK should implement
specific protections indicating it is the application’s responsibility,
stating “The backup flag is up to the host app to control. In general,
we do not want to put additional burdens on integrators by setting
flags that lead to non-standard, unexpected behavior on their side.”
However, for the vendors who responded, 26 of the 37 suggestions
were implemented. Finally, of the 14 responding vendors, 4 claimed
the violations were identified because we analyzed an old version
of their SDK. However, we re-ran the analysis on the most recent
version of the SDKs and found similar issues. The vendors affirmed
to resolve most of the security weaknesses in future releases.

8 CONCLUSION

Payment Service Providers have simplified mobile payment inte-
gration for application developers. However, security weaknesses
present in payment SDKs can impact thousands of applications.
In this work, proposed AARDroid for automated security assess-
ment of payment SDKs with respect to OWASP’s MASVS security
standard for mobile applications. We studied 50 payment SDKs,
identifying widespread security weaknesses.
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A APPENDIX
Listing 1, 2, 3 displays the flawed code discussed in Section 6. Table 7

details the AARDroid results for all 28 MASVS tests on all 50 SDKs.

Tables 8 to 11 list the AARDroid checks in detail, listing the MASVS
IDs, check type, severity, and L1 or L2 classification. Table 12 lists
the MASVS checks that were out of scope for this study. Table 13

lists the data-sensitivity classification of nodes in our topology.

Figure 3 shows the counts of SDKs failing each checks.

Samin Yaseer Mahmud, K. Virgil English, Seaver Thorn, William Enck, Adam Oest, and Muhammad Saad

1 public void addCreditStoreSecurityCode (String credit_card_security_code)
{

2 try {

3 String secure_code = this.RSAEncrypt(credit_card_security_code);

4 L.e("secure_code " + secure_code);

5 this.sharedPreferences.edit().putString ("
credit_card_security code", secure_code).commit() ;

6 this.setOneClickCVVDataAvailable (true);

7 } catch (NoSuchAlgorithmException var3) {

8 var3.printStackTrace () ;

10 }
11 }
Listing 1: Code snippet of persisting encrypted CVC in
Dotpay

1

2

3 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance ("RSA");

4 keyPairGenerator. initialize (1024);

5 KeyPair keyPair = keyPairGenerator.genKeyPair () ;

6 PublicKey publicKey = keyPair.getPublic();

PrivateKey privateKey = keyPair.getPrivate ();

8 this.sharedPreferences.edit().putString ("publicKey", Base64.
encodeToString (publicKey . getEncoded () , 2)).commit();

9 this.sharedPreferences.edit().putString("privateKey", Base64.
encodeToString (privateKey.getEncoded (), 2)).commit() ;

10

Listing 2: Code snippet of insecurely instantiating and
storing RSA key for CVC encryption
1

3 String var2 = Secure.getString (this.c.getContentResolver (), “android id")

4 byte[] var3 = var2.getBytes();

5 de.wirecard . paymentsdk . helpers.a.a(var3, (byte)-48);

6 byte[] vard = varl != null ? varl.getBytes("utf-8") : new byte[0];

7 SecretKeyFactory var5 = SecretKeyFactory.getInstance ("PBEWithMD5AndDES" ) ;

8 SecretKey var6 = var5.generateSecret (new PBEKeySpec((new String (de.
wirecard . paymentsdk . helpers .a.a(var3, (byte)35))).toCharArray()));

9 Cipher var7 = Cipher. getInstance (" PBEWithMD5AndDES" ) ;

10 var7.init(1, var6, new PBEParameterSpec(Secure.getString(this.c.
getContentResolver (), "android_id").getBytes("utf-8"), 20));

1 return new String(Base64.encode(var7.doFinal (vard), 2), "utf-8");

Listing 3: Code snippet showing encryption function for
SharedPreferences Editor in Wirecard
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Table 7: This table overviews the AARDroid analysis results of 28 MASVS requirement on 50 SDKs. A (v') on a cell means that
MASYVS requirement has been violated or True Positive. (X) means it was reported by the tool but is False Positive. (®, ©, O)
means leakage of High, Morderate, Low sensitive data. (-) means that test was not applicable for the particular SDK. Empty
cell means this MASVS requirement has not been violated. SDKs marked with (*) maintains all the MASVS-L1 checks that are

applicable. Column colors indicate severity level: High Severity B; Medium Severity T Low Severity 0
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Table 8: MASVS checks for Data Storage and Privacy requirements.

Samin Yaseer Mahmud, K. Virgil English, Seaver Thorn, William Enck, Adam Oest, and Muhammad Saad

ID Requirement MASVSID | Check Type Severity | L1 | L2
DS-1 | System credential storage facilities need to be used to store sensitive data. 2.1 Code Syntax Mid v |V
DS-2 | No sensitive data should be stored outside of the app container or system credential storage facilities. 2.2 Code Syntax , XML High v |V
DS-3 | No sensitive data is written to application logs. 23 Dataflow High vV
DS-4 | No sensitive data is shared with third parties unless it is a necessary part of the architecture. 24 Dataflow High v |V
DS-5 | The keyboard cache is disabled on text inputs that process sensitive data. 25 XML Mid vV
DS-6 | No sensitive data is exposed via IPC mechanisms. 2.6 Dataflow High v | v
DS-7 | No sensitive data, such as passwords or pins, is exposed through the user interface. 2.7 XML Mid v |V
DS-8 | No sensitive data is included in backups generated by the mobile operating system. 2.8 XML Low v
DS-9 | The app removes sensitive data from views when moved to the background. 2.9 Code Syntax Mid v
DS-10 | The app enforces a minimum device-access-security policy, such as requiring the user to set a device passcode. 2.11 Code Syntax Low v
DS-11 No sensitive d?ta should be stored locally on the‘moblle device. Instead, data should be retrieved from a 2.13 Dataflow High v
remote endpoint when needed and only be kept in memory.
. If sensitive data is still required to be stored locally, it should be encrypted using a key .
Ds-12 derived from hardware backed storage which requires authentication. 214 Dataflow High 4
Table 9: MASVS checks for Cryptography requirements.
ID Requirement MASVSID | Check Type | Severity | L1 | L2
CRYPTO-1 | The app does not rely on symmetric cryptography with hardcoded keys 3.1 CryptoGuard High v |V
The app uses cryptographic primitives that are appropriate for the particular use-case, -
CRYPTO-2 PP cryptographicp . pprop . P 3.3 CryptoGuard High v |V
configured with parameters that adhere to industry best practices.
The app does not use cryptographic protocols or algorithms that are widel -
CRYPTO-3 PP YPUOBrap e p & Y 34 CryptoGuard | High | v | v
considered deprecated for security purposes.
CRYPTO-4 | All random values are generated using a sufficiently secure random number generator. 3.6 CryptoGuard Mid v |V
Table 10: MASVS checks for Network Communication requirements.
ID Requirement MASVSID | Check Type | Severity | L1 | L2
Data is encrypted on the network using TLS. The secure channel is used .
TLS-1 . P & 5.1 CryptoGuard High VER S
consistently throughout the app.
The TLS settings are in line with current best practices, or as close as possible if the .
TLS-2 . 6 P P 5.2 CryptoGuard High v |V
mobile operating system does not support the recommended standards.
The app verifies the X.509 certificate of the remote endpoint when the secure channel .
TLS-3 | . PP . . P 5.3 CryptoGuard High VER IS
is established. Only certificates signed by a trusted CA are accepted.
The app either uses its own certificate store, or pins the endpoint certificate or
TLS-4 | public key, and subsequently does not establish connections with endpoints that 5.4 Code, XML Mid v
offer a different certificate or key, even if signed by a trusted CA.
Table 11: MASVS checks for Platform Interaction requirements.
ID Requirement MASVS ID | Check Type | Severity | L1 | L2
PLAT-1 | The app only requests the minimum set of permissions necessary. 6.1 XML Mid V|V
PLAT-2 | The app does not export sensitive functionality via custom URL schemes unless properly protected. 6.3 XML High V| v
PLAT-3 | The app does not export sensitive functionality through IPC facilities unless properly protected. 6.4 XML High V|V
PLAT-4 | JavaScript is disabled in WebViews unless explicitly required. 6.5 Code Syntax Mid V|V
PLAT-5 | WebViews are configured to allow only the minimum set of protocol handlers required 6.6 Code Syntax Mid V| Vv
PLAT-6 If native methm':ls of the app are e)fposed to a WebView, verify that the WebView only 67 Code Syntax Mid VAR,
renders JavaScript contained within the app package.
PLAT-7 | The app protects itself against screen overlay attacks. 6.8 Code Syntax Low v
PLAT-8 | A WebView’s cache, storage, and loaded resources should be cleared before the WebView is destroyed. 6.10 Code Syntax Mid v
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Table 12: MASVS checks that were out of scope of the study.

MASVS ID Requirement L1 | L2
2.10 The app does not hold sensitive data in memory longer than necessary, and memory is cleared explicitly after use. v
212 The app educates the user about the types of personally identifiable information processed, as well as security best R

i practices the user should follow in using the app.

2.15 The app’s local storage should be wiped after an excessive number of failed authentication attempts. v
3.2 The app uses proven implementations of cryptographic primitives. v | v
3.5 The app doesn’t re-use the same cryptographic key for multiple purposes. v | v
55 The app doesn’t rely on a single insecure communication channel (email or SMS) for critical operations, such as v

: enrollments and account recovery.
5.6 The app only depends on up-to-date connectivity and security libraries. v
6.2 All inputs from external sources and the user are validated and if necessary sanitized. This includes data R
) received via the Ul IPC mechanisms such as intents, custom URLs, and network sources.
6.8 Object deserialization, if any, is implemented using safe serialization APIs. v | v
6.11 Verify that the app prevents usage of custom third-party keyboards whenever sensitive data is entered (10S only). v

Table 13: Nodes of the Data Ontology of sensitivity level High and Medium. Sensitivity level Low had 124 nodes which was too
large to put in the table.

Sensitivity | Ontology Nodes
bankaccountnumber,bankroutingnumber,biometricinformation,credential,creditcardsecuritycode,driverlicensenumber,

High financialaccountinformation,government-issueidentificationinformation,password,paymentcardinformation,
paymentcardnumber,securitycode,socialmediaaccountcredential,ssn,tin
accountbalanceinformation,accountinformation,androidid,contactinformation,credithistory,creditinformation,dateofbirth,
deviceidentifier,emailaddress,expirationdate,financialtransactioninformation,identifier,imei,insurancepolicynumber,ipaddress,
Medium key,healthinformation,Joginformation,macaddress,medicalinsuranceinformation,paymentcardexpirationdate,paymentinformation,
phonenumber,postaladdress,sensitivepersonalinformation,serialnumber,transactioninformation,token,vehicleidentificationnumber,
vehiclelicensenumber,zipcode

DS4
DS6
TLS1
TLS2
TLS3
DS5
CRYPTO1
CRYPTO2 .
CRYPTO4 .
PLAT2
PLAT3
DS11 I——
DS12 I———
DS | mm——
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Figure 3: Count of SDK failing each check
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