
H���S�����: Behavior Transparency and Control for Smart
Home IoT Devices

TJ OConnor
North Carolina State University

tjoconno@ncsu.edu

Reham Mohamed
Technische Universität Darmstadt

reham.mohamed@trust.tu-darmstadt.de

Markus Miettinen
Technische Universität Darmstadt

markus.miettinen@trust.tu-darmstadt.de

William Enck
North Carolina State University

whenck@ncsu.edu

Bradley Reaves
North Carolina State University

bgreaves@ncsu.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-darmstadt.de

ABSTRACT
The widespread adoption of smart home IoT devices has led to a
broad and heterogeneous market with �awed security designs and
privacy concerns. While the quality of IoT device software is un-
likely to be �xed soon, there is great potential for a network-based
solution that helps protect and inform consumers. Unfortunately,
the encrypted and proprietary protocols used by devices limit the
value of traditional network-based monitoring techniques. In this
paper, we present H���S�����, a building block for enhancing
smart home transparency and control by classifying IoT device com-
munication by semantic behavior (e.g., heartbeat, �rmware check,
motion detection). H���S����� ignores payload content (which is
often encrypted) and instead identi�es behaviors using features of
connection-oriented application data unit exchanges, which rep-
resent application-layer dialog between clients and servers. We
evaluate H���S����� against an independent labeled corpus of
IoT device network �ows and correctly detect over 99% of behav-
iors. We further deployed H���S����� in a home environment
and empirically evaluated its ability to correctly classify known
behaviors as well as discover new behaviors. Through these e�orts,
we demonstrate the utility of network-level services to classify
behaviors of and enforce control on smart home devices.

CCS CONCEPTS
• Security and privacy→ Access control; • Networks→ Pro-
grammable networks; • Computing methodologies → Bag-
ging.

ACM Reference Format:
TJ OConnor, Reham Mohamed, Markus Miettinen, William Enck, Bradley
Reaves, and Ahmad-Reza Sadeghi. 2019. H���S�����: Behavior Trans-
parency and Control for Smart Home IoT Devices. In 12th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec ’19),
May 15–17, 2019, Miami, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3317549.3323409

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’19, May 15–17, 2019, Miami, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6726-4/19/05. . . $15.00
https://doi.org/10.1145/3317549.3323409

1 INTRODUCTION
The pervasiveness of the Internet-Of-Things (IoT) devices is esti-
mated to reach 50 billion by 2020 [31]. A substantial population
of these IoT devices is emerging in the residential environment.
These smart home devices o�er convenience by monitoring wire-
less sensors such as temperature, carbon monoxide, and security
cameras. Further, these devices enable automating actions including
sounding alarms, making co�ee, or controlling lighting. As the func-
tionality of these devices mature, they are increasingly interacting
autonomously, invisible to the end-user. Turning o� a connected
alarm can signal a co�ee pot to begin brewing and a motion-sensor
can automate turning on a light. However, risk is introduced with
each newly connected device due to their often-insecure software.

The smart home market is incredibly broad and heterogeneous,
lacking su�cient standards and protocols to enforce security and
privacy. Yet, these same devices generate, process, and exchange
vast amounts of privacy-sensitive and safety-critical information
in our homes [30]. Manufacturers can surreptitiously gather data
from the end user in violation of their expressed policy desires.
As an example, Germany banned the wireless Cayla doll, which
contained a microphone and uploaded recorded conversations with
children [19, 20]. Further, an attacker may use a smart home IoT
device to gain unauthorized access to other devices in the home.
The Central Intelligence Agency’sW������ A���� implant on con-
nected Samsung Televisions targeted homeWiFi networks, accessed
user-names and passwords, and covertly recorded audio [12].

Smart home security is an emerging topic without a clearly
de�ned threat model. A compromised or misbehaving smart home
device may attack other network hosts, but it may also eavesdrop
on the physical home environment. It is often not necessary to stop
the �rst, or even second, instance of covert audio recording. Rather,
it is important to identify misbehaving devices and take some action
(e.g., access control, or simply turning o� the device). For example,
in the case of the Cayla doll, there is limited harm in eavesdropping
on a few of a child’s conversations, but risk increases the longer the
eavesdropping occurs. Similarly, when a device suddenly changes
its behavior, as in the case of W������ A���� recording audio, the
owner’s goal is to prevent prolonged exposure.

The software on IoT devices is unlikely to improve signi�cantly
in the near future. Therefore, consumers would greatly bene�t from
a network-based solution. However, contemporary tools provide
limited help in interpreting communications exchanges taking place
in the smart home network, as they require in-depth understanding

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

about network protocols and the speci�c network set-up. Meaning-
ful monitoring and access control are challenging for experts, let
alone for regular smart home users. The task is further complicated
by the fact that IoT devices often use encryption, meaning solutions
cannot rely on the contents of network tra�c.

In this paper, we present H���S����� as a building block for
improving the transparency and control over the network communi-
cations of smart home devices. The key insight of H���S����� is to
classify and control semantic behaviors using features that represent
application-layer dialogue between clients and servers. We imple-
ment H���S����� on a commodity wireless router and build upon
Software De�ned Networking (SDN) primitives to control network
tra�c based on end-user preferences. By operating on application
behaviors, rather than IP addresses and packet �ows, H���S�����
facilitates enhanced user agents to provide transparency and con-
trol over smart home devices. We evaluate H���S����� in two
ways. First, we evaluate its classi�cation accuracy using a dataset
of labeled packet traces from the YourThings [3] project. For this
dataset, our analysis demonstrates that H���S����� achieves an
accuracy of 99.69% in classifying behaviors. Second, we deployed
H���S����� in a real home environment with 20 devices and eval-
uated its ability to correctly classify known behaviors, as well as
to help discover new behaviors. Such capabilities demonstrate the
practical utility and importance of providing end-users with greater
transparency and control of smart home devices.

We make the following contributions in this paper.
• We present the H���S����� framework for identifying dis-
tinct semantic behaviors by smart home devices. H���S�����
provides a building block for transparency and control of
smart home IoT device network communications by report-
ing activity on the granularity of semantic device behaviors
instead of low-level concepts such as distinct packet �ows.

• We propose a supervised learning technique to classify semantic
device behaviors using network tra�c. The technique works
on both encrypted tra�c and proprietary application-layer
protocols and achieves greater than 99% accuracy on an
independent data-set. More importantly, H���S����� can
identify novel behaviors with resistance to under-�tting.

• We perform an empirical evaluation of H���S����� in a real
home environment.We demonstrate how H���S����� can
help identify previously unseen devices and behaviors. We
demonstrate our behavior �ngerprinting approach enables
policy and access control across �ne-grained behaviors.

The remainder of this paper proceeds as follows. Section 2 pro-
vides motivation and articulates the problem. Section 3 overviews
the H���S����� architecture. Section 4 describes its design. Sec-
tion 5 describes the implementation. Section 6 evaluates accuracy
and performance. Section 7 presents an empirical study of H����
S����� in a home area network. Section 8 discusses limitations.
Section 9 overviews related work. Section 10 concludes.

2 MOTIVATION AND PROBLEM
IoT smart home devices present signi�cant security and privacy
challenges for consumers. Many smart home devices have poor
authentication mechanisms, un-patchable software vulnerabilities,
and limited access control con�gurability. Even when devices are

not being exploited, they may present privacy threats due to unex-
pected behavior implemented by device manufacturers. Providing
transparency into device behavior is challenging, as smart home
devices frequently use proprietary application-layer protocols. Fi-
nally, e�orts to secure smart home devices (e.g., HTTPS encryption)
further complicate network layer access controls.
Motivating Example (Alexa API Abuse): Checkmarx security
researchers recently identi�ed a method for abusing the implicit
policies of the Amazon Alexa digital assistant [21]. In order to
covertly record audio from Alexa enabled devices, the researchers
created a voice activated application, known as an Alexa skill. The
application posed as a simple application for solving math problems
but instead recorded audio inde�nitely. The researchers abused the
API by proving a null value to a prompt, silencing the device and
deceiving the user into believing it is no longer listening. This abuse
of trust motivates our work and presents a challenging problem
for defense. In terms of the smart home IoT device, it must assume
the server-side platform is trusted after mutual authentication and
execute commands. H���S����� addresses this by pushing the
monitoring and policy enforcement into the network using SDN
and a machine learning classi�cation of application behaviors.
Problem Statement: The goal of H���S����� is to provide the
primitives for transparency and control of behaviors of otherwise re-
source constrained smart home IoT devices. To achieve this, H����
S����� seeks to operate on application behaviors such as heartbeat,
�rmware check, reporting, and uploading audio or video recordings.
Abstracting network �ows and packet data into classi�cations o�ers
better intuition about the device activity. Thus, H���S����� seeks
to enable transparency by reporting which device performs what
behaviors, when and how often, rather than the simple existence
and frequency of network tra�c. Furthermore, H���S����� seeks
to enable enhanced systems that enforce network access control
policies based on observations of previous undesirable behaviors,
thereby allowing end users to use valuable features of smart home
devices that otherwise exhibit privacy invasive behaviors.
Threat Model and Assumptions: H���S����� is designed for a
residential smart home network setup consisting of sensors, actu-
ators, and smart objects, both wired and wirelessly connected to
a consumer-grade router. We assume smart home devices contain
default credentials, lack su�cient security protocols, enable over-
privilege, and contain un-patched vulnerabilities. We assume an
adversary can compromise smart home devices either by directly
connecting to them either through NAT hole punching [33], lateral
pivoting from other compromised devices, gaining physical control
of the device [9], or abusing cloud-based control. H���S�����
protects against both malicious adversaries and benign behavior
by manufacturers that violate the explicit desires of the end-user.

The adversary’s goal is to exploit smart home devices to cause
physical e�ects (e.g., turn o� an alarm), ex-�ltrate data (e.g., enable
remote video surveillance), steal credentials, or compromise other
devices in the network. The attacker may launch an attack through
malware residing on the device, a remote network attack, or abuse
server-side privileges on the speci�c service-provider for the de-
vice. Further, we assume smart home devices lack timely patching
and updates to correct vulnerabilities. Defending attacks without
the cooperation of the device is a su�ciently hard problem since

H���S�����: Behavior Transparency and Control for Smart Home IoT Devices WiSec ’19, May 15–17, 2019, Miami, FL, USA

Consumer
Router with
HomeSnitch

Internet

IoT
Device

IoT
Device

IoT
Device

WiFi

User Device

HomeSnitch
Control

Behavior Report

User Preferences
Allow …

Security Provider
Behavior Signatures
Policies

Figure 1: H���S����� provides a building block for trans-
parency and control of IoT device behaviors.

traditional security approaches involve scanning for vulnerabilities,
enabling �ne-grained permissions on the host, and patching vul-
nerabilities. A smart home network of devices cannot employ any
of these approaches in the defense. H���S����� prevents against
attacks via IP connection-oriented protocols. We consider devices
that communicate via other protocols (e.g. ZigBee, Bluetooth, NFC)
as important and orthogonal problems for future work. As discussed
in Section 8, our work does not address the case of mimicry attacks.

3 OVERVIEW
As motivated in the previous section, H���S����� seeks to enable
practical transparency and control of the network communication
of IoT smart home devices. Figure 1 depicts our vision of howH����
S����� would operate in practice. The H���S����� software is
originally con�gured with a set of behavior models and default
network access control policies. Over time, these models and poli-
cies are updated via a feed from a security service provider (e.g.,
BitDefender [7] or Norton [23]). When IoT smart home devices
communicate with servers on the Internet, or with one another on
the local LAN, H���S����� classi�es the network �ows as known
behaviors for devices. Unknown network �ows are matched with a
set of the closest device behaviors and optionally reported to the se-
curity service provider to enhance training models. End users gain
transparency through the H���S����� control interface (e.g., a
web page or mobile app). This interface reports the network activity
of IoT smart home devices based on their high-level behaviors. The
interface also allows the end user to specify preferences of what
behaviors they would like to allow (e.g., similar to how smartphone
platforms enable greater privacy control).

This paper addresses two key research challenges.
• Behavior Classi�cation: There is a large semantic gap be-
tween the bytes sent in packets and the behaviors that are
understandable to users. Classi�cation is further inhibited
by encryption and proprietary application-layer protocols.

• Network Mediation: Network tra�c must be mediated both
between devices and the Internet, as well as between devices
within the home network. Smart home devices are designed
for simple residential networks and functionality often fails
when enhanced technologies such as VLANs are introduced.
Therefore, the LAN must retain a �at address space.

H���S����� overcomes these research challenges through the
use of SDN and supervised machine learning. More speci�cally, it

Data Plane (Open vSwitch)

Control Plane (RYU Application)

Behavior
Classifier

Application

Context
Monitor

Policy
Enforcer

Network
Flows

Flow Rules &&
Packet Rewrites

Policy

Alerts

Labels Flows as
App Behaivor

Maintains Context
of all Devs

Considers Behavior
 to Enforce Policy

Figure 2: H���S����� leverages a �ne-grained behavior
classi�cation approach to provide context for e�ective pol-
icy enforcement and access control.

extends the �rmware of an operating system for commodity routers
(OpenWrt) with OpenFlow capabilities. By using OpenFlow, H����
S����� is able tomediate all network communication, both between
devices and between devices and the internet, without changing the
IP address space structure. Using OpenFlow also allows the design
to easily scale to environments with multiple access points, which
are becoming more common as newer WiFi technologies such as
IEEE 802.11ac operate faster over shorter distances. H���S�����
then uses OpenFlow to send network �ow information to an SDN
controller application. In our prototype, the SDN controller applica-
tion runs on a separate Raspberry Pi controller board connected via
Ethernet; however, as consumer devices with greater processing
capabilities (e.g., the Turris Omnia [36]) become available, all of the
H���S����� functionality can be moved to a single device.

The SDN controller application performs behavior classi�cation
based on network �ow information. Speci�cally, H���S����� ex-
tracts application data unit (ADU) exchanges to acquire an abstract
representation of the client and server communication. ADU fea-
tures are then used by a supervised machine learning algorithm to
classify the �ow as a known behavior triple: (<vendor>, <model>,
<activity>), e.g., (Ring, Doorbell, Motion-Upload). Note that hu-
man readable names such as “Motion-Upload” must be assigned
to a learned behavior. When a network �ow has a poor match to
any known behavior triple (as de�ned by a con�gurable thresh-
old), H���S����� provides a set of closest matches. These matches
can provide valuable insight into the correct classi�cation (e.g., all
closest matches are for the same vendor or the same activity). In
practice, we imagine a security service provider that maintains and
distributes a trained model of these triples.

4 DESIGN
This section describes the design of H���S�����, as depicted in
Figure 2. Our design currently separates the classi�cation logic in
the controller application onto an external embedded device; how-
ever, as routers continue to becomemore computationally powerful,
it is reasonable to expect the controller to be moved onto the router.
We begin the discussion of the H���S����� design by describing
the behavior classi�cation from network �ow information. This
classi�cation system represents the core of our technical contribu-
tion. We then proceed to describe the context manager, the policy
language, and policy enforcement using SDN primitives.

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

Note that for simplicity, we assume all devices on the network are
IoT devices. However, in practice networks will contain desktops,
laptops, and smartphones. We assume the existence of techniques
to determine if a device is an IoT device, which can be accomplished
by looking at the OUI or using more advanced classi�cation systems
such as IoT Sentinal [18].

4.1 Classi�cation of Application Behaviors
We treat smart home device behavior identi�cation as a multi-
class classi�cation problem. More speci�cally, we seek to map a
network �ow to the speci�c application behavior and device that
produced it. Examples of device behavior include downloading
�rmware, receiving a con�guration change, and sending video
to a remote user. Deep packet inspection, protocol analysis, and
certi�cate inspection provide limited insight into behaviors, as
network �ows are often encrypted to a cloud-based server such as
Google Cloud, Amazon Web Services, or Microsoft Azure.

H���S����� de�nes an application behavior as a triple. We
originally sought to de�ne a behavior simply by an activity that
transcends vendors and devices. However, in practice, we found
vendor and model implementations de�ned the structure of ap-
plication data exchanges. This even varies across speci�c product
o�erings as we discovered the original Ring Doorbell had a much
more simplistic set of behaviors compared against the recent Ring
Pro model. Therefore, we decided to tie the activity to a speci�c
vendor and device. We found that this has the bene�t of helping
identify unknown behaviors. For example, a new behavior may
have a relatively close match for another device by the same ven-
dor. The remainder of this section describes our feature selection,
classi�cation model, and operational considerations.
Application Data Unit (ADU) Extraction: To overcome the lim-
itation of analyzing encrypted tra�c, H���S����� constructs ap-
plication data unit (ADU) exchanges that provide an abstract rep-
resentation model of the exchange between a client and a server.
Several approaches exist to build application-level models from
packet headers in an o�ine manner [14, 26, 27]. H���S����� uses
adudump [35], which has the capability for continuous measure-
ment of application-level data from network �ows. Additionally,
adudump only uses TCP/IP packet header traces (i.e., no application
layer headers or payloads) to construct a structural model of the ap-
plication dialog between each server and the client. This overcomes
the limitations of increasingly encrypted payloads in smart home
devices. As an added bene�t, this header information is readily
available to our SDN controller applications. In our analysis of sev-
eral di�erent devices and behaviors, we found that the application
data units can be used to accurately distinguish between behaviors.
Feature Selection: H���S����� uses supervised machine learn-
ing to classify network �ows into application behaviors. We se-
lected thirteen features from transport layer headers that describe
the client/server dialogues of smart home IoT devices (listed in
Table 1). Each feature is a descriptive statistic calculated from a
single application data unit. ADUs are bidirectional representations
of sequential exchanges within a single connection, terminated
upon proper connection tear-down or by �ow timeout [35]. A key
insight that bene�ts H���S����� is that smart home IoT tra�c is
predominately sequential with the server and client taking turns.

Table 1:H���S����� features describe the application data
exchanges. This approach overcomes the limitations of solu-
tions that rely on physical, network, or transport layer head-
ers unique to smart home deployments.

Feature Category Importance
average bytes from IoT device per sequence throughput 0.213104
average bytes from server per sequence throughput 0.072519
aggregate sever bytes sent over ADU throughput 0.105775
aggregate IoT device bytes sent over ADU throughput 0.117552
min bytes from IoT device from a sequence burstiness 0.038917
min bytes from server from a sequence burstiness 0.038344
max bytes from server from a sequence burstiness 0.079063
max bytes from IoT device from a sequence burstiness 0.135909
stdev of bytes between server sequences burstiness 0.054491
stdev of bytes between IoT device sequences burstiness 0.050798
server sequences per ADU synchronicity 0.013566
IoT device sequences per ADU synchronicity 0.016211
total time of connection duration 0.063750

This property is due to the limited complexity of devices with most
processing done server side. The lack of tra�c concurrency al-
lows H���S����� to observe the behavior of the application by
extracting statistics from each sequential turn.

Our model excludes IP addresses, port numbers, and DNS in-
formation as they present several limitations and are increasingly
less reliable features [8, 16, 38]. Instead, we focus on content ag-
nostic features that solely describe the behavior of a smart home
application. We recognize a real-world appliance may bene�t from
additional information (i.e., destination address and port). However,
our threat model considers an attacker that is focused on exhibit-
ing a behavior and could use �ow information to mask and hide
a behavior. We conducted several experiments with real devices
to identify features that o�er better discriminative capabilities of
smart home applications. Speci�cally, we observed the importance
of features describing the burstiness, synchronicity, and through-
put of application dialogues. Table 1 lists the set of these features,
consisting of average, aggregate, minimum and maximum mea-
surements for these dialogues. For purposes of de�nition, sequence
indicates a single directional application exchange and ADU in-
dicates the entire application data unit dialogue, bounded by the
creation and termination of the entire network �ow. The notion
of burstiness describes the proximity of arrival instances within
each other and the variance between each arrival [4]. To measure
this within an ADU, we examine the variance in terms of both
payload size and inter-arrival times. To measure synchronicity, we
observed measurements that describe how a client and server take
turns sending data within the context of an ADU. Throughput is a
routinely used but important measure of the aggregate data sent
over the duration of the ADU.

As part of our experiments in Section 6, we calculated the fea-
ture importance (a measurement of the predictive importance for
each feature variable in the random forest) with respect to the
YourThings [3] corpus of data (also shown in Table 1). Average
bytes, max bytes, and aggregate bytes from the IoT device were the
most dominant features and accounted for 46.65% of the decision
estimate used by our classi�er. Since smart home devices are typi-
cally designed for speci�c purposes and communicate in a limited
fashion, these features best describe the throughput and burstiness
unique to application data units. This insight matches the analysis

H���S�����: Behavior Transparency and Control for Smart Home IoT Devices WiSec ’19, May 15–17, 2019, Miami, FL, USA

of the YourThings data-set, where 64.72% of device �ows lasted for
less than a second. Overall, we carefully selected a balanced set of
features to support the multi-class classi�cation problem associated
with device behaviors. We discovered burstiness features describe
the on-demand actions of motion sensors. In contrast, throughput
features better describe data-intensive sensors. Synchronicity and
duration o�er strong features for data logging and analytic reports.
Classi�cation Model Selection: We considered multiple algo-
rithms (described in Section 6) but found Random Forest to be the
best for intuitive reasons. Random Forest leverages both ensemble
and averaging methods to build several estimators independently
and then average their predictions [29]. By leveraging a bagging-
based ensemble model, H���S����� is resistant to under-�tting
with a reduced variance. Our results in Section 6.1 demonstrate that
Random Forest o�ers a very accurate model that precisely classi�es
smart home device behaviors and detects new behaviors.

In Section 6, we show that both Random Forest Classi�ers (RFC),
Gradient Boost, and K-Nearest Neighbor (kNN) algorithms score
well in accuracy using k-fold cross validation of a labeled data-set.
However, H���S����� needs to inform the user when previously
unseen behaviors occur. This design constraint further motivates
an ensemble or averaging based classi�er, as they are more resistant
to under-�tting. To detect unknown behaviors, H���S����� uses
the probability prediction score as a measure to de�ne a threshold
of acceptance. Data points below the threshold are predicted as
unknown behaviors and a new classi�cation label is created.

We de�ne Unknown Behavior Miss Rate (UBMR) as the percent-
age of data-points in a given data-set that fail to be identi�ed as a
new classi�cation. True Positive Rate (TPR) is the total number of
true positives divided by the sum of the true positives plus false pos-
itives. Ideally, the classi�cation should minimize the UBMR without
adverse e�ect to the TPR. As discussed and empirically evaluated
in Section 6, we found a threshold of 0.89% as the best balance
between UBMR and TPR. The evaluation further demonstrates the
utility of Random Forest over kNN.
Training Data: Supervised machine learning approaches require
initial training data to determine classes for unclassi�ed data-points.
In this paper, we consider two approaches for constructing the
initial training data. For the accuracy evaluation in Section 6.1, we
construct initial labels from a corpus of time-stamped behaviors.
However, this approach does not scale well. For the empirical study
in Section 7, we also use clustering algorithms to identify behavior
classes in spatial data-sets. Speci�cally, we use the density sampling
algorithm, DBSCAN, as it performs well with small sample sizes
and ambiguous sized clusters [10, 29]. For both methods, we use
cross validation scoring to improve the accuracy of training data.
Security Service Provider: In practice, we found that the trained
model is often speci�c to devices by the same manufacturer. To
ensure H���S����� can detect behaviors for new devices, we pro-
pose the use of a security service provider (SSP) to share features
and expand the set of supported smart home device behaviors.
This approach allows the development of a model that expands
as the heterogeneity of devices increases. Both IoT-Sentinel [18]
and IoTurva [13] show promise as techniques for an SSP to collect
normal and anomalous device activities from consumer deploy-
ments. H���S����� could use a publish-subscribe interface similar

to virus reporting. For example, BitDefender [7] and Norton [23]
o�er subscription-based services for defending smart home devices.

Approaches that send information out of the home network raise
concerns of privacy and data quality. To ensure the privacy of users,
H���S����� can limit data collection to the features and labels
collected in a smart home IoT deployment. When doing so, the
labels associated with time-stamps must be appropriately protected
(e.g., excluding day, hour, and minute information). Labels must
also be associated with devices. Fortunately, the higher order bits
of MAC addresses indicate the Organizationally unique identi�er
(OUI). End users can also be consulted to help identify devices.
Finally, such crowd sourcing approaches must address data quality,
e.g., via user reputation, voting, or threshold-based acceptance. We
leave such considerations for future work.
Behavior Reporting: H���S����� o�ers novel behavior detec-
tion and descriptive reporting. Reporting provides an understand-
ing of the function of newly detected behaviors. Appendix B dis-
plays a behavior report that predicts closest matching behaviors
while o�ering behavior-centric details (i.e., frequency, duration,
and throughput). This approach allows a user to generalize and
discern the purpose of a previously unseen behavior. This approach
enables identifying behaviors that have a high degree of similarity.

4.2 Context Monitor
Smart home devices are designed to connect and exchange data
with one another. Devices connect directly through explicit com-
munication channels or implicitly through back-end platforms. As
illustrated by the Alexa API abuse in Section 2, users cannot always
trust third party platforms to protect security and privacy. H���S�
�����’s context monitor maintains the context and behaviors of all
peer smart home devices on the network. It archives historical �ow
data (source, destination, transport layer ports, time-stamp, �ow
duration, and classi�cation labels) in a database at the controller.
Our context manager prototype currently provides the time period,
the state of being encrypted or not, and the existence of a manage-
ment device on the network at the time of the �ow. In the future,
we envision correlating �ows to servers to identify the implicit
communication occurring between devices or contrarily the lack
of such communication. The context is used in three ways. First,
it is provided in an activity report to the user in the H���S�����
control interface. Second, it can be used for access control policies
(see Section 4.3). Third, we envision a security service provider can
collect aggregated historical context to help detect malicious device
behaviors. We also envision a system that can identify when less
secure devices are leveraged to attack more restricted devices.

4.3 Policy
The labels derived in Section 4.1 can be used to provide transparency
of network tra�c as well as access control. In this section, we
describe our access control policy language. The typical user will
never interface directly with our policy language. However, the
expressiveness of the policy language corresponds to the high-level
capabilities and may be built upon by enhanced agents.
H���S����� Syntax: H���S����� enforces policy rules that
prevent unwanted device behaviors. H���S����� uses a Device,
Behavior, Context ! Actionmodel to express access control policies.

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

Listing 1: Examples of H���S�����’s con�gurable policy.
drop Ring-Doorbell, [Ring,Doorbell,Motion-Upload], (T: 0100-0300)
log WeMo-BabyCamera, [WeMo,BabyCamera,Firwmare-Update], (C: unencrypted)
reject LockState-Lock, [Lockstate,Lock,Unlock], (M: notpresent)

The De�ice predicate is a general description of the device (e.g.,
Ring-DoorbellCam, WeMo-MotionSensor, Nest-Alarm) that maps
to a set of link layer MAC addresses for devices. Next, the Beha�ior
predicate is a behavior triple, as de�ned in Section 4.1: (<vendor>,
<model>, <activity>). For example, the triple (WeMo, Motion-
Sensor, Upload-Motion) describes the behavior of a WeMo Motion
Sensor uploading motion sensor data. Note that the actual string
names need to be de�ned by either the security service provider
or the end user. Finally, the Context predicate allows the user to
describe complex scenarios based on information in the Context
Manager (Section 4.2). Our prototype supports connection encryp-
tion, time period, and co-located management devices. When the
criteria speci�ed in the Device, Behavior, and Context are met, the
rule implements the speci�ed Action to enforce �ne-grained access
control to alert, log, pass, drop, reject, or redirect. Appendix A lists
the context free grammar for the H���S����� policy language.
Policy Examples: Listing 1 shows three example policy rules.
These examples demonstrate the �exibility to implement access
controls for behaviors and context. The �rst rule prevents disclos-
ing motion-upload data from a wireless doorbell during the early
morning hours of 0100-0300. The second rule logs �rmware updates
over unencrypted connections. The third rule prevents a smart-lock
from unlocking unless the management device (e.g., a smartphone)
is attached to the smart home wireless network. Analogous to the
popular If-This-Then-That model, we envision a community of
shared recipes to address the array of smart home IoT threats [37].
Policy Enforcement: H���S����� generates OpenFlow Flow-
Mods representing policy rules to enforce the �ne-grained access
control on smart home devices and behaviors. To accomplish this,
H���S����� maintains a historical database of previously seen
behaviors and �ow-level information (i.e source address, source
port, destination address, destination port). To enforce the policy
primitive actions, H���S����� queries the database for the �ow-
level information (i.e., a single or set of ports and/or addresses) that
can be used to describe the historical �ows without con�icting with
other behaviors. H���S����� uses this query to create �ow modi�-
cations. Simple actions including pass or drop can be accomplished
with a single �ow modi�cation. However, more complex actions
(e.g., reject or redirect) are brought to the controller with distinct ac-
tion labels (by overwriting the IP ToS as demonstrated in [24]). For
the reject action, the controller forges a TCP reset packet. For the
redirect action, the controller develops �ow modi�cations using the
OFPActionSetField primitive to re-write the source and destination
MAC and IP Addresses for both the device and destination.

5 IMPLEMENTATION
We built H���S����� on top of a commodity wireless access point
running an open source �rmware that supports a virtual switch
and the OpenFlow SDN protocol. This section details the key the
components of H���S�����, including the data and control plane.

Table 2: Comparison of accuracy, recall and F1 scores for dif-
ferent supervised learning algorithms.

Model Accuracy Recall F1 Score
k-Nearest Neighbor 99.32 %± .12 87.97 %± 2.16 86.35 %± 2.56
Gradient Boost 64.70 %± 42.10 53.55 %± 33.51 51.72 %± 32.72
Random Forest 99.69 %± .06 94.66 %± 1.21 93.93 %± 1.40

Data Plane:We implemented a prototype on a Linksys router, run-
ning our custom OpenWrt �rmware. We integrated Open vSwitch
Support (OVS) with OpenWrt by compiling OVS as a kernel module.
Our prototype, running OVS 2.39, supports up to the OpenFlow 1.51
protocol speci�cation. The router is con�gured to use simultaneous
dual band with support for 802.11n (2.4 GHz) and 802.11ac (5GHz).
We created a single OVS bridge to bind both WiFi interfaces and all
local Ethernet interfaces, allowing OpenFlow to manage wireless
connected devices as well as devices connected via Ethernet.
Control Plane:We implemented our SDN Security Orchestrator
on a Raspberry Pi 3 Model B single board computer, connected via
Ethernet to our router. The Raspberry Pi has a quad-core 64-bit
ARM Cortex A53 clocked at 1.2 GHz. We �ashed the Ubuntu 16.04
Operating System onto the Raspberry Pi and installed the necessary
packages to support the Ryu component-based software de�ned
networking framework. We developed our controller application as
a Ryu management application in 6,503 lines of Python. Our Ryu
application implements the logic described in Section 4 that identi-
�es labeled smart home IoT device behaviors and implements the
expressed policies of the end-user. We construct our machine learn-
ing models using the RandomForestClassi�er and DBSCAN modules
from the scikit-learn open source machine learning library [29].

6 EVALUATION
H���S����� identi�es device behavior by analyzing communi-
cation �ows. It trains supervised machine learning models of de-
vice/server dialogues, to classify network �ows into behavior clas-
si�cations, regardless of possible encryption and proprietary pro-
tocols. In this section, we empirically evaluate the performance of
our prototype by answering the following research questions.
RQ1 (Accuracy): Is H���S����� e�ective in identifying and clas-

sifying smart home IoT device behaviors?
RQ2 (Performance):What are the performance impacts on through-

put and jitter?
RQ3 (Required Training): How many samples are required to train

H���S����� to classify di�erent behaviors?

6.1 RQ1: Behavior Classi�cation Evaluation
Data-set and Experimental Setup:We evaluated the accuracy of
our behavior classi�cation model against an independent corpus of
IoT device behaviors. The YourThings [3] data-set included network
captures from 46 devices, clustered into 148 semantic behaviors,
connected to over 2,239 cloud endpoints between 13-19 April 2018.
The data-set is representative of the broad smart home IoT market.
Accuracy: To evaluate accuracy, we compared the performance
of Random Forest (our chosen model) against kNN (used in Peek-
A-Boo [2]), and Gradient Boost (used in IoTSense [6]) against the
data-set. We determined the accuracy through a strati�ed 10-fold

H���S�����: Behavior Transparency and Control for Smart Home IoT Devices WiSec ’19, May 15–17, 2019, Miami, FL, USA

Figure 3: Receiver operating characteristics curve for com-
parison of di�erent supervised learning algorithms abilities’
to classify behaviors while detecting new behaviors.

cross-validation procedure against the labeled data-set [29]. Further,
we calculated the recall and F1 for all models. Table 2 shows the
results of our evaluation. As previously described in Section 4.1, our
approach relies on a Random Forest classi�cation model. Ensemble-
based algorithms, including Random Forests and Gradient Boost,
typical perform well for numerical features without scaling and
perform implicit feature selection. Random Forest yielded the high-
est score using cross validation scoring. K-Nearest Neighbor (kNN),
known for high accuracy and no a priori assumption, classi�ed the
labeled data-set with high accuracy and moderate recall.
Unknown Behavior Miss Rate: A key feature of H���S�����
is identifying when new behaviors occur and �nding the closest
match. To measure the e�ectiveness of new behavior detection and
resistance to under-�tting, we measure the Unknown Behavior Miss
Rate (UBMR). UMBR is the percentage of data-points in a given data-
set belonging to previously unseen classes that fail to be identi�ed
as a new class. To calculate UBMR, we used a leave-one-out ap-
proach in which we iterated through each of the di�erent behavior
classes. For each behavior, we removed all �ows corresponding to it
from the training data-set. We then trained the classi�er using the
remaining behaviors and then attempted to label �ows belonging
to the examined behavior class, determining the con�dence score
of each classi�cation. We compared results of both kNN, Gradient
Boost, and Random Forest classi�ers. Since we are attempting to
identify unknown behaviors, a low con�dence score indicates a
better result (more likely to be identi�ed as a new class).

In our evaluation, Random Forests provided better calibrated con-
�dence scores of unknown behavior over kNN and Gradient Boost.
In contrast, the other approaches attempted to pull data points
belonging to unknown behavior classes into existing classi�cations.
This result supported our initial intuition that an bagging-based
ensemble classi�er would be more resistant to under-�tting. Fig-
ure 3 depicts a ROC curve demonstrating the impact of threshold
selection on true positive rate (TPR) and UBMR for the YourThings
data-set. Our results indicate that a threshold of 0.89 provided the
best trade-o� between accurately classifying behaviors against iden-
tifying unknown behaviors with a 11.96% UBMR and 96.82% TPR.
However, we acknowledge that a TPR of 96.82% would certainly

Table 3: Performance Impact on a Single Connection

Test Throughput (Mbps) Latency (ms)
Physical (Baseline) 15.848 ± 0.087 183.988 ± 2.154
Physical (RYU SimpleSwitch) 15.332 ± 0.096 278.552 ± 3.024
Physical (HomeSnitch) 15.375 ± 0.238 283.452 ± 4.333

Wireless connections

 0
 1
 2
 3
 4
 5

 T
hr

ou
gh

pu
t (

M
bp

s)

No-controller
HomeSnitch

RYU-SS

 0
 150
 300
 450
 600

 0 5 10 15 20 25

La
te

nc
y

(m
s)

Parallel connections

No-controller
HomeSnitch

RYU-SS

Figure 4: Comparison of the impact ofmultiple wireless con-
nections on latency and throughput for a controller-free
wireless router, a simple layer-2 controller application and
H���S�����.

raise false alerts for a real-world appliance. Thus, the selection of
the threshold must consider the balance of security and usability.

6.2 RQ2: Network Performance Evaluation
In this section, we examine the performance associated with moni-
toring network �ows. Setting up a testbed with many physical de-
vices is prohibitively complex. Therefore, we perform experiments
in two testbeds: physical and emulated. For the physical testbed,
we simulate many IoT devices by having one device increase its
connection rate to match that of many devices. For the emulated
testbed, we emulate many devices in a de facto SDN emulator and
con�rm the e�cacy of the results of the physical testbed.
Experimental Setup: We used the iPerf toolkit to actively mea-
sure throughput and jitter (i.e., the latency variations among pack-
ets). To parameterize iPerf, we drew from the �ow duration, band-
width, and protocols of devices of the YourThings data-set discussed
in Section 6.1. We found an average smart home IoT �ow duration
of 22.72 seconds. 64.72% of devices connected for less than a second
while 17.64% of �ows exceeded a minute. The maximum �ow in the
YourThings data-set lasted 286.32 seconds. Connections occurred
both with and without encryption. We compared the results of our
H���S����� prototype against a SDN controller application per-
forming MAC-layer matching, and a traditional MAC-layer switch.
To replicate a traditional MAC-layer controller we connected our
virtual switch to the RYU Simple_Switch.py application included in
the RYU documentation. To measure against a baseline, we con�g-
ured a separate router with the default �rmware.
Physical Testbed:Wemeasured the performance of H���S�����
over 1,000 iterations using the iPerf toolkit and report average re-
sults with a 95% con�dence interval. Each �ow lasted 10 seconds,
and we measured the achieved throughput and jitter at 100ms inter-
vals. Althoughwe cannot completely guarantee outside interference
in our experiment, we took conservative actions to prevent frame
interference on the wireless standard. The IEEE 802.11n 2.4 GHz

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

Figure 5: CDF for the con�dence scores for the 148 predicted
behaviors in the 46 device YourThings data-set.

wireless standard supports three non-overlapping 20 MHz width
channels in the US (1,6, and 11). We connected the workstation to
channel 11, as channels 1 and 6 were used by neighboring networks.
We disconnected all other wireless devices from the workstation to
avoid introducing collisions. Table 3 shows the impact on a single
wireless device. Figure 4 illustrates the impact of additional devices
(simulated by parallel connections) on throughput and latency. As
depicted in Table 3 and Figure 4, there is a 100ms latency overhead
incurred for using an SDN controller H���S����� implementation
to process �ows. This is consistent for both the SimpleSwitch and
HomeSnitch implementations. However, this has little impact on
throughput, retaining 97.01% of the performance.
Emulated Testbed: To understand the performance trade-o� asso-
ciated with the increasing scale of devices, we emulated twenty-�ve
unique wireless stations using the MiniNet WiFi framework [11].
We hosted this emulation on a workstation physically connected to
our router. Stations were created using the 802.11 protocol, placed
on the same channel, with randomized distances from the access
point. We measured the throughput and jitter for connections to
twenty-�ve unique iPerf server instances. Our results mirrored the
results on the physical testbed with a nominal e�ect on throughput.

6.3 RQ3: Required Training
We constructed the cumulative distribution function graph rep-
resented in Figure 5 by recording the predicted class probability
scores for samples from each of the 148 behaviors in our model.
Figure 5 plots our results comparing the con�dence prediction score
against the cumulative distribution function. The resulting graph
demonstrates our model predicts behaviors with a high degree of
con�dence. In our experiments, we discovered the monolithic na-
ture of smart home devices require few samples to train our model
to identify multiple behavior classes. To evaluate the number of
required training samples, we used a test-training set approach in
which we iterated through 200 samples for each behavior. For each
unique class, we removed all the samples from the class. We then
incrementally added back each sample as a member of the behavior
class. At each increment, we averaged the prediction score of the
remaining unlabeled samples from the behavior class. We observed

that behaviors required an average of 58.82 and 62.28 samples to
achieve 90% and 95% prediction con�dence.

7 EMPIRICAL STUDY
H���S����� uses supervised learning to classify features from
connection-oriented application data unit exchanges. The behav-
ior classi�cation allows H���S����� to inform the user of device
activities and restrict unwanted activities. In this section, we empir-
ically evaluate H���S�����’s ability to classify device behaviors,
identify unknown behavior, and prevent an unwanted behavior by
answering the following research questions.
RQ4 (Behavior Classi�cation): How e�ective is H���S����� at

classifying behaviors in a typical smart home environment?
RQ5 (Malicious Behavior): Is it possible for H���S����� to iden-

tify a malicious attack scenario?
RQ6 (Policy Expression): Given a known behavior, can a H���S�

����� policy prevent the behavior?

Experimental Setup: Our experimental setup consisted of 20 de-
vices in active use at the residence of one of the authors of the paper.
These devices represent di�erent categories including automation,
�tness, appliance, and security camera functions. We con�gured
H���S����� to log and classify all smart home IoT device tra�c in
our environment over two days. We correlated user activities (e.g.,
turning on/o� lights, resetting the co�ee pot �lter, and triggering
motion events) to the observed behaviors classes.

7.1 RQ4: Behavior Classi�cation
We observed H���S�����’s ability to manage security and privacy
by classifying behaviors and enforcing policies against 20 devices
on the home-network of one of the primary authors.
Encryption Observations: H���S����� classi�es behaviors re-
gardless of the use of encryption or proprietary protocols. In our
empirical evaluation, we observed that 76.22% of smart home tra�c
in our environment was encrypted. These �ndings support the
observations by Sivanathan et al. [32], who identi�ed 65% of IoT
device and 70% of all tra�c on the Internet is encrypted. This result
con�rms that packet payload inspection cannot e�ectively classify
IoT application layer protocols and behaviors.
Labeling Behaviors: We applied descriptive labels to the over
34,000 application exchanges recorded over two days. To apply de-
scriptive labels to behavior clusters, we correlated our user-driven
actions and leveraged insight from behavior reports. Utilizing our
behavior reporting framework, and correlating user-driven activ-
ity, we were able to assign descriptive names to behavior triples:
(<vendor>, <model>, <activity>). For example, we correlated motion
sensing from the Ring Companion application to a speci�c cluster
and labeled the cluster as (Ring, Doorbell, MotionUpload).
Results: Figure 6 shows the top 35 behaviors from our empirical
evaluation, which accounts for over 90.39% of all application data
exchanges over the period. Heartbeat behaviors (i.e., a �xed pattern
that occurs periodically) account for over 55.09% of all network
�ows. Several devices have multiple Heartbeats. For example, the
Canary device has two similar Heartbeat behaviors that poll at ten
and one minute intervals. Heartbeats enable perpetual connectiv-
ity for devices by establishing meet-in-the-middle connections on

H���S�����: Behavior Transparency and Control for Smart Home IoT Devices WiSec ’19, May 15–17, 2019, Miami, FL, USA

Figure 6: Top 35 behaviors over 48 hours sample. H���S����� provides semantic behavior transparency and reporting for
smart home devices. Note that all clusters were identi�ed by H���S����� without training on prior data-sets. The semantic
labels were manually created using H���S�����’s behavior reporting feature to determine and assign descriptive labels.

Table 4: H���S����� has accuracy across deployments by
using features that are transport and destination agnostic.

Device ADUs Accuracy
Amazon Echo Dot 302 90.40%
B&D Crockpot 914 98.47%
Canary Security Camera 15,426 98.88%
Hue Light Bridge 2,362 99.58%

cloud platforms. Our results demonstrate that user driven actua-
tor control (e.g., turning on lights) and sensory reporting (motion,
video uploads) have di�erent signatures from behaviors and can be
accurately predicted. Evaluating the labeled data-set, we record a
99.40% cross validation score of the 34,109 labeled behaviors.
Generality of Model: To evaluate how our approach extends
across deployments, we classi�ed tra�c captures from four devices
in the YourThings data-set that overlapped our empirical network.
We detected the behaviors from the Echo Dot, Crock-pot, Canary
Camera, and Hue Light Bridge with high con�dence to samples
we collected separately as depicted in Table 4. In contrast, we had
di�culty classifying a Ring Doorbell. Subsequently, we learned
there was a model mismatch between the original and professional
versions of the device. The functionality of the newer device, and
by extension the behaviors, di�ered from the original.

7.2 RQ5: Malicious Behavior
We evaluatedH���S�����’s ability to classify a malicious behavior
by simulating an attack of a smart plug. The TP-Link HS110 is a
smart plug that an end-user can control via an app. By interacting
with the smart plug, the app can monitor energy consumption and
schedule actions. Stroetmann and Esser [34] identi�ed that the app
to device communication consisted of a protocol encrypted with an
XOR cipher. We hosted a malicious copy of the device �rmware on
our server. Further, we modi�ed Stroetmann’s work to build a tool
that forced the device to download the malicious �rmware. Next,
we trained H���S����� to recognize a �rmware download to the
device by observing downloads of benign �rmware.
Results: H���S����� identi�ed each individual attempt to down-
load the �rmware and subsequently logged the activity. This alert
o�ers insight to a user that their device has become compromised
by downloading �rmware from a malicious server. H���S�����
provides the ability to train the system and write rules to prevent
against such a download (i.e., by white-listing downloads to only
the o�cial site). However, we envision a service provider (similar
to virus reporting) could provide both behavior training signatures
and rules for enforcing behaviors for speci�c devices.

7.3 RQ6: Policy Expression
To illustrate the e�ectiveness of H���S�����’s policy enforcement
mechanism, we demonstrated the ability for H���S����� to create

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

rules to block Ring Doorbell motion detection for a ten-minute
period to protect privacy. H���S����� provides a web interface to
apply policy actions such as disabling motion detection for speci�c
IoT devices. After enabling a rule for our doorbell, we attempted to
trigger the motion detection. No motion detection was alerted to
the user or logged in the history of the smartphone app. The �ows
were stopped by the data plane. The �ow modi�cations alerted that
407 packets (31,462 total bytes) were dropped when the doorbell
attempted to upload the motion events. When our policy expired,
the �ow modi�cation was removed and we observed that packets
�owed unrestricted to the Ring servers. We generated new motion
events and noted that the new events were reported in the app
history. However, somewhat surprisingly, we identi�ed that the
doorbell did not bu�er any of the events that occurred while it was
restricted by our policy. Next, we applied a similar rule preventing
our D-Link Motion Sensor from uploading motion sensing data. As
a result, 26 packets (1,936 total bytes) were dropped. This prevented
motion uploads from being displayed on our smartphone’s app.
However, when the rule expired, the motion sensor uploaded the
bu�ered motion data. This contrast illustrates that the e�ectiveness
of policy enforcement ultimately relies on understanding of the
overall bu�ering and communications model of each IoT devices.
[25] o�ers further insight on restricting per-device behavior.

8 LIMITATIONS
Mimicry Attacks: Our supervised machine learning approach
leverages an ensemble-method classi�er to identify tra�c patterns
that represent device behaviors. Our work does not address the
case of an informed adversary that is able to compromise a device
and mimic the tra�c patterns of permitted behaviors. An adversary
could mask a command and control channel inside tra�c. While
this attack would be successful in misleading our classi�cation
model, an attacker would still need to learn the contents of the
policy to overcome its restrictions. Further, the policy could be
speci�ed in such a way to permit behaviors to only speci�c trusted
servers. However, we do not entirely rule out the feasibility for an
attacker to both mislead the classi�cation and overcome the policy.
In this case, wemust consider complementary approaches including
device identity, anti-tampering, and device attestation [1, 17, 41]
Partial �ow analysis: H���S����� requires capturing the full
network �ow for precise classi�cation. To enable real-time enforce-
ment, we construct �ow modi�cation instructions based on histor-
ical �ow data. However, given our observations of the simplistic
nature of smart home device behaviors, we believe it feasible to
construct a stochastic model that could real-time predict behaviors
with a brief packet queue. We reserve this topic for future work.

9 RELATEDWORK
The closest related work to H���S����� are e�orts designed to
identify IoT devices based on their network tra�c patterns. IoTSen-
tinel [18] use static features such as protocol types, IP addresses,
and port addresses to �ngerprint devices. However, these features
alone cannot di�erentiate semantic behaviors performed by the
�ngerprinted devices. In concurrent work, IoTSense [6] expands on
IoTSentinel by using device behaviors to �ngerprint IoT devices. To
some extent, the features used by IotSense are similar to those used

by H���S�����. However, their notion of “behavior” is di�erent.
They do not seek to actually label behaviors. Rather, their goal is
strictly �ngerprinting devices. This di�erence in goal causes IoT-
Sense to not consider new behaviors when classifying tra�c. As we
show in Section 6, the Gradient Boost algorithm used by IoTSense
performs poorly when identifying new behaviors.

Also concurrent to our work, Peek-a-Boo [2] seeks to identify
behaviors, such as turning on a light switch, from network tra�c.
Peek-a-Boo is an attack technique designed to invade the privacy
of smart home users. In contrast, H���S����� seeks to provide a
defense. In doing so, H���S����� considers a broader de�nition of
behaviors, including not only user actions (e.g., turning on a switch),
but also hidden activities performed by devices (e.g., heartbeats, an-
alytics). Interestingly, Peek-a-Book also chooses kNN over Random
Forests to classify tra�c; however, it does not consider the detection
of previously unclassi�ed (i.e., new) behaviors. HoMonit [40] also
seeks to infer behaviors from encrypted wireless tra�c. However,
their work is narrowly focused on the communication between
devices and a SmartThing’s hub to implement anomaly detection.

Several solutions have also been proposed for the detection and
prevention of attacks in smart home IoT networks. DioT[22] and
IoTPOT [28] focused exclusively on the classi�cation of anomalous
tra�c in order to detect compromised IoT device bot-net activity.
Existing solutions are limited in their ability to enforce policy that
considers behavior and context [39]. ContextIoT [15] provides a
vendor-speci�c solution for the SmartThings platform and does
not generalize. IDIoT [5] white-lists devices to the minimal set of
device behaviors based on �ow information. However, the use of
perpetual cloud connections and changing functionality of devices
hinders the practicality of exclusively using �ow data. In contrast,
H���S����� o�ers behavioral transparency for both known and
anomalous behaviors. This approach allows us to realize behavior
transparency and implement practical context-aware policy.

10 CONCLUSION
This paper presented H���S�����, a building block for enhanc-
ing transparency and control for end-users by classifying smart
home device communication by behaviors. H���S����� leverages
the vantage point of software-de�ned networking to monitor de-
vice/server dialogue exchanges to classify device behaviors and
identify new and unknown behaviors. By selecting destination and
content-agnostic features, H���S����� can classify device behav-
iors even in the presence of encryption and proprietary protocols.
We implemented H���S����� on a commodity wireless router
and built upon SDN primitives to enforce network access controls.
Using a Random Forest Classi�er, we achieved over 99% accuracy
for classifying behaviors from an independent data-set. Through
these e�orts, we demonstrated the e�ectiveness of network-level
services to classify behaviors and enforce control on IoT devices.

ACKNOWLEDGEMENTS
This material is based upon work supported in part by funding from
the German Research Foundation (Deutsche Forschungs Gemein-
schaft - DFG), as part of project S2 within the CRC 1119 CROSSING.
Any opinions, �ndings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
re�ect the views of the funding agencies.

H���S�����: Behavior Transparency and Control for Smart Home IoT Devices WiSec ’19, May 15–17, 2019, Miami, FL, USA

REFERENCES
[1] Tigist Abera, N. Asokan, Lucas Davi, Farinaz Koushanfar, Andrew Paverd, Ahmad-

Reza Sadeghi, and Gene Tsudik. 2016. Invited - Things, Trouble, Trust: On
Building Trust in IoT Systems. In Annual Design Automation Conference (DAC).
ACM, Austin, Texas, 121:1–121:6.

[2] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus
Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and A Selcuk
Uluagac. 2018. Peek-a-Boo: I see your smart home activities, even encrypted!
https://arxiv.org/pdf/1808.02741.pdf.

[3] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In IEEE Security and Pri-
vacy. IEEE, San Francisco, CA, 20–25.

[4] Sami Ayyorgun and Wu-chun Feng. 2004. A Deterministic De�nition of Bursti-
ness For Network Tra�c Characterization. In International Conference on Com-
puter Communications and Networks. Los Alamos National Laboratory, Los
Alamos, NM, 1–29.

[5] David Barrera, Ian Molloy, and Heqing Huang. 2017. IDIoT: Securing the Internet
of Things like it’s 1994. https://arxiv.org/abs/1712.03623.

[6] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. 2018. Behavioral Fingerprinting of IoT Devices. In
Workshop on Attacks and Solutions in Hardware Security (ASHES). ACM, Toronto,
Canada, 41–50.

[7] Bitdefender. 2018. BOX 2: The new way to secure your connected home. https:
//www.bitdefender.com/box/.

[8] Alberto Dainotti, Antonio Pescape, and Kimberly C Cla�y. 2012. Issues and
future directions in tra�c classi�cation. In IEEE Network, Vol. 26. IEEE.

[9] Nitesh Dhanjani. 2015. Abusing the internet of things: blackouts, freakouts, and
stakeouts. O’Reilly Media, Inc., Sebastopol, CA.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. http://dl.acm.org/citation.
cfm?id=3001460.3001507. In International Conference on Knowledge Discovery and
Data Mining (KDD). AAAI Press, Portland, Oregon, 226–231.

[11] Ramon Fontes and Christian Rothenberg. 2018. Mininet-WiFi: Emulator
for Software-De�ned Wireless Networks. https://github.com/intrig-unicamp/
mininet-wi�.

[12] Thomas Fox-Brewster. 2017. Here’s How The CIA Allegedly Hacked Sam-
sung Smart TVs – And How To Protect Yourself. https://www.forbes.com/sites/
thomasbrewster/2017/03/07/cia-wikileaks-samsung-smart-tv-hack-security.

[13] Ibbad Hafeez, Aaron Yi Ding, and Sasu Tarkoma. 2017. IOTURVA: Securing
Device-to-Device (D2D) Communication in IoT Networks. In Workshop on Chal-
lenged Networks (CHANTS). ACM, Snowbird, Utah, 1–6.

[14] Felix Hernández-Campos, Kevin Je�ay, and F Donelson Smith. 2007. Modeling
and generating TCP application workloads. Technical Report. 280–289 pages.

[15] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. 2017. ContexIoT:
Towards Providing Contextual Integrity to Appi�ed IoT Platforms. In Network
and Distributed System Security Symposium (NDSS). San Diego, CA. https://doi.
org/10.14722/ndss.2017.23051

[16] Hyunchul Kim, Kimberly C Cla�y, Marina Fomenkov, Dhiman Barman, Michalis
Faloutsos, and KiYoung Lee. 2008. Internet tra�c classi�cation demysti�ed:
myths, caveats, and the best practices. In Conference on emerging Networking
EXperiments (CoNEXT). ACM, 11.

[17] Parikshit Mahalle, Sachin Babar, Neeli R. Prasad, and Ramjee Prasad. 2010. Iden-
tity Management Framework towards Internet of Things (IoT): Roadmap and
Key Challenges. In Recent Trends in Network Security and Applications, Natarajan
Meghanathan, Selma Boumerdassi, Nabendu Chaki, and Dhinaharan Nagamalai
(Eds.). Springer Berlin Heidelberg, 430–439.

[18] M.Miettinen, S.Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and S. Tarkoma. 2017.
IoT SENTINEL: Automated Device-Type Identi�cation for Security Enforcement
in IoT. In International Conference on Distributed Computing Systems (ICDCS).
IEEE, IEEE, Atlanta, GA, 2177–2184.

[19] Brian Naylor. 2016. This Doll May Be Recording What Children Say, Privacy
Groups Charge. https://n.pr/2i2FtfS.

[20] Soraya Sarhaddi Nelson. 2017. Germany Bans Ḿy Friend CaylaD́oll Over Spying
Concerns. https://n.pr/2kRI5do.

[21] Lily Hay Newman. 2018. Turning an Echo Into a Spy Device Only Took Some
Clever Coding. https://www.wired.com/story/amazon-echo-alexa-skill-spying.

[22] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang Dang, N
Asokan, and Ahmad-Reza Sadeghi. 2018. D‹IoT: A Crowdsourced Self-learning
Approach for Detecting Compromised IoT Devices. https://arxiv.org/pdf/1804.
07474.pdf.

[23] Norton. 2018. Core Secure WiFi Router. https://us.norton.com/core.
[24] TJ OConnor, William Enck,WMichael Petullo, and Akash Verma. 2018. Pivotwall:

Sdn-based information �ow control. In Proceedings of the Symposium on SDN
Research. ACM, San Francisco, CA.

[25] TJ OConnor, William Enck, and Bradley. Reaves. 2019. Blinded and Confused: Un-
covering Systemic Flaws in Device Telemetry for Smart-Home Internet of Things.
In ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec). ACM, Miami,FL.

[26] David Olshefski and Jason Nieh. 2006. Understanding the Management of Client
Perceived Response Time. In Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS). ACM, Saint Malo, France, 240–251.

[27] David P. Olshefski, Jason Nieh, and Erich M. Nahum. 2004. ksni�er: Determin-
ing the Remote Client Perceived Response Time from Live Packet Streams. In
Symposium on Operating System Design and Implementation (OSDI). USENIX
Association, San Francisco, California, 333–346.

[28] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: Analysing the Rise
of IoT Compromises. In Conference on O�ensive Technologies (WOOT). USENIX
Association, Washington, D.C., 9–9.

[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. In J. Mach. Learn. Res., Vol. 12. JMLR.org, 2825–
2830.

[30] A. R. Sadeghi, C. Wachsmann, and M. Waidner. 2015. Security and privacy
challenges in industrial Internet of Things. In Design Automation Conference
(DAC). IEEE, 1–6. https://doi.org/10.1145/2744769.2747942.

[31] Helen Rebecca Schindler, Jonathan Cave, Neil Robinson, Veronika Horvath, Petal
Hackett, Salil Gunashekar, Maarten Botterman, Simon Forge, and Hans Graux.
2012. Examining Europe’s Policy Options to Foster Development of the ’Internet
of Things’. http://www.rand.org/pubs/research_reports/RR356.html.

[32] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A.
Vishwanath, and V. Sivaraman. 2017. Characterizing and classifying IoT tra�c in
smart cities and campuses. In Conference on Computer CommunicationsWorkshops
(INFOCOM WKSHPS). 559–564.

[33] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-
Phones Attacking Smart-Homes. In Conference on Security & Privacy in Wireless
and Mobile Networks (WiSec). ACM, Darmstadt, Germany, 195–200.

[34] ubomir Stroetmann and Tobias Esser. 2017. Reverse Engineering the TP-Link
HS110. https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/.

[35] Je� Terrell, Kevin Je�ay, F. Donelson Smith, Jim Gogan, and Joni Keller. 2009.
Passive, Streaming Inference of TCP Connection Structure for Network Server
Management. In Tra�c Monitoring and Analysis, Maria Papadopouli, Philippe
Owezarski, and Aiko Pras (Eds.). Springer Berlin Heidelberg, 42–53.

[36] Turris. 2019. Omnia: More than just a router. https://omnia.turris.cz/en/.
[37] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Men-

nicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-
Action Programming in the Wild: An Analysis of 200,000 IFTTT Recipes.
http://doi.acm.org/10.1145/2858036.2858556. In Conference on Human Factors
in Computing Systems (CHI). ACM, San Jose, California, 3227–3231. https:
//doi.org/10.1145/2858036.2858556

[38] Nigel Williams, Sebastian Zander, and Grenville Armitage. 2006. A preliminary
performance comparison of �ve machine learning algorithms for practical IP
tra�c �ow classi�cation. In SIGCOMM Computer Communication Review, Vol. 36.
ACM, 5–16.

[39] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
2015. Handling a Trillion (Un�xable) Flaws on a Billion Devices: Rethinking Net-
work Security for the Internet-of-Things. In Workshop on Hot Topics in Networks
(HotNets). ACM, Philadelphia, PA, 5:1–5:7.

[40] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Tra�c. In
SIGSAC Conference on Computer and Communications Security. ACM, 1074–1088.

[41] X. Zhang, R. Adhikari, M. Pipattanasomporn, M. Kuzlu, and S. Rahman. 2016.
Deploying IoT devices to make buildings smart: Performance evaluation and
deployment experience. In World Forum on Internet of Things (WF-IoT). IEEE,
530–535. https://doi.org/10.1109/WF-IoT.2016.7845464

WiSec ’19, May 15–17, 2019, Miami, FL, USA OConnor and Mohamed, et al.

A HOMESNITCH POLICY GRAMMAR

hrulei ::= hactioni hdevicei hbehaviori hcontexti (1)
hactioni ::= halerti | hlogi | hpassi | hdropi | hrejecti | hredirecti (2)
hdevicei ::= hvendori“-”hmodeli (3)
hvendori ::= hconsti (4)
hmodeli ::= hconsti (5)

hbehaviori ::= hvendori hmodeli hactivityi (6)
hactivityi ::= hconsti (7)
hcontexti ::= htime_ctxi | henc_ctxi | hmgt_ctxi (8)
htime_ctxi ::= “(T:” htimei “-” htimei “)” (9)
henc_ctxi ::= “(C:” hencryptedi | hunencryptedi “)” (10)
hmgt_ctxi ::= “(M:” hpresenti | hnotpresenti “)” (11)

htimei ::= [0-9] [0-9] “:” [0-9] [0-9] (12)
hconsti ::= “’”[A-Za-z0-9_.]+“’” (13)

Figure 7: H���S����� Syntax in BNF

B HOMESNITCH BEHAVIOR REPORTING

[x] Devices Exhibiting Behavior: Wstein-Motion-B-0
Device Name Source Flows
Wstein-Motion 10.10.4.115 608

[x] Top 3 Destination Ports
Port Occurrences Frequency
1883 608 100%

[x] Top 3 Destination Addresses
Address DNS Name Occurrences Frequency
52.38.217.134 mq.gw.tuyaus.com 112 18%
54.203.40.243 mq.gw.tuyaus.com 110 18%
54.148.195.111 mq.gw.tuyaus.com 101 17%

[x] Top 5 DNS Names
DNS Name Occurrences Frequency
mq.gw.tuyaus.com 608 100%

[x] Calculating Periodic Interval (Nth Order Discrete Difference)
 No frequency exists.

[+] Identical Application Data Exchanges
Occurrences Frequency Pattern ____
608 100% [203.0, -4.0, 43.0, -5.0]

[x] 3 Most Recent Flows
Time Source Sport Destination Dport
2018-11-12 09:36:51Wstein-Motion 30793 mq.gw.tuyaus.com 1883
2018-11-12 09:36:03Wstein-Motion 3452 mq.gw.tuyaus.com 1883
2018-11-12 09:35:32Wstein-Motion 19258 mq.gw.tuyaus.com 1883

[x] Behavior Similarity
Behavior Matches
iView-Motion-B-7 94.90%
iView-Motion-B-6 5.10%

[x] Bytes Sent/Received (75th Percentile of Flows)
 Bytes Sent: 246.0 (7.27 % of all flows)
 Bytes Rcvd: 9.0 (2.73 % of all flows)

[x] Time Duration
 Median Mean 75th Percentile
 6.74 s 10.75 s 6.97 s

Figure 8:H���S�����provides descriptive reports of behav-
ior characteristics and identi�es similar behaviors.

