ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

IEEE S&P IEEE 58P

FUNCTIONAL

AVAILABLE

COSSETER: GitHub Actions Permission Reduction Using
Demand-Driven Static Analysis

Greg Tystahl*, Jonah Ghebremichael*, Siddharth Muraleef, Sourag Cherupattamoolayil,
Antonio Bianchif, Aravind MachiryT, Alexandros Kapravelos*, William Enck*
*North Carolina State University, T Purdue University
Email: gttystah@ncsu.edu, jghebre @ncsu.edu, smuralee @purdue.edu, scherupa@purdue.edu,
antoniob@purdue.edu, amachiry@purdue.edu, akaprav@ncsu.edu, whenck@ncsu.edu

Abstract—Security vulnerabilities in GitHub Actions are in-
creasingly leading to software supply chain attacks. In some
instances, attackers have modified a project’s source code
by crafting a malicious issue title. To mitigate such threats,
GitHub introduced a permission system that allows project
maintainers to customize the privilege granted to workflows
and their jobs. Unfortunately, permission policy specification is
a known hard problem across nearly all domains of computing,
particularly when it is introduced after an ecosystem has been
established. This paper proposes COSSETER, a static analysis
tool designed to determine least-privilege permission policies
for jobs within GitHub Actions workflow specifications. To
achieve this goal, COSSETER overcomes state explosion chal-
lenges in static analysis of JavaScript Actions that result from
packing and nuances in commonly used npm dependencies.
We evaluated COSSETER using a dataset of manual permission
annotations of JavaScript Actions used by industry tools and
found that it has a comparable precision and recall. We further
evaluate COSSETER at scale, studying the permission needs
of 1,842 vulnerable workflows identified by prior work and
extracting permission summaries for 8,353 JavaScript Actions.
We find that COSSETER’s permission policy can reduce 76 % of
1,274 high severity code injection vulnerabilities into medium,
low, or no severity. In doing so, we demonstrate how CoOS-
SETER suggested permissions can provide a valuable defense
against software supply chain attacks.

1. Introduction

Continuous Integration (CI) systems [1] are an essential
component of modern software development. There are
several popular CI platforms [2], [3], [4], but GitHub Ac-
tions [5] (GitHub’s CI platform) is one of the most popular
due to its seamless integration with GitHub repositories and
a large ecosystem of third-party modules called Actions.
Developers use the CI platform by defining a workflow,
which is a YAML file that specifies a pipeline of build steps
(Listing 1 shows an example). Unfortunately, GitHub work-
flows are difficult to write securely, and vulnerabilities are
widespread [6], [7]: Muralee et al. [8] recently discovered
critical code injection vulnerabilities in 4,307 workflows and
80 Actions. Due to the tight integration with repositories,

vulnerabilities in workflows have a severe impact on the
security of the corresponding project source code. For ex-
ample, an unprivileged attacker can open an issue with a
malformed title to exploit a code injection vulnerability and
modify source code files in the repository [9].

In 2021, GitHub introduced a permission mechanism to
reduce the impact of workflow vulnerabilities. In February
2023, GitHub changed the default permissions to be read-
only on only a few permission scopes [10]. However, this
new default only applies to a repository if the associated
GitHub organization was created in February 2023 or later.!
Therefore, millions of repositories still have the write-all
default. Furthermore, prior work in related fields (e.g., An-
droid [11], [12], [13]) suggests that when developers are
asked to specify permissions, the resulting policies are often
over-privileged.

Automatically suggesting a minimal set of permissions
(MINPERMS) for code execution is a classic security re-
search problem [11], [14], [15], [16]. Approaches can be
classified as dynamic or static. GitHub released a dynamic
solution: actions-permissions [17]. However, similar to other
dynamic solutions to this classic problem, it is fundamen-
tally limited by code coverage. Furthermore, it cannot be
run at scale or transparently. Many GitHub workflows rely
on values in the repository’s secret storage and third-party
HTTP APIs. Therefore actions-permissions can only be
run by repository owners, requiring them to add actions-
permissions as an additional step in the workflow. Two years
after its initial public release, actions-permissions is still in
beta, perhaps suggesting limitations in its utility.

In this paper, we propose COSSETER, a static ap-
proach to the MINPERMS problem for GitHub workflows.
A GitHub workflow is composed of independent units
called Actions, which have well-defined inputs and outputs
and can be implemented in any programming language.
Most (70%) [8] of the actions are implemented through
JavaScript. These Actions commonly invoke permission-
protected GitHub functionality using either GitHub’s HTTP
REST API or its Octokit JavaScript library. JavaScript static
program analysis has presented challenges in many do-

1. For personal accounts, the new read-only default applies to any
repository created in February 2023 or later.

mains. Dynamic types are used liberally for both values
and objects, requiring context and flow-sensitive analysis
to reliably extract even a simple call graph. State-of-the-art
approaches [18], [19] use abstract interpretation to generate
an Object Dependency Graph (ODG) to enable more ac-
curate control and data flow analysis. However, we found
that these tools fail to analyze real-world JavaScript Actions,
timing out after (in some cases) multiple days of analysis.
Upon a detailed investigation, we found that statically ana-
lyzing JavaScript Actions to determine MINPERMS requires
overcoming the following three challenges.

Challenge 1 - Packing: Over 50% of the JavaScript Ac-
tions used within our dataset of GitHub workflows are
packed. Packing adds all npm dependencies into one file,
stripping them of all metadata and replacing the require
statements with an abstracted dynamic lookup mechanism.
COSSETER overcomes this challenge by extending the oper-
ational semantics of state-of-the-art ODG-based static anal-
ysis tools [18], [19] and adding a pre-pass that resolves
the call edges removed by packing. This pre-pass avoids
significant state explosion required to resolve the call edges
using abstract interpretation.

Challenge 2 - Dependency State Explosion: JavaScript
Actions commonly have significant state explosion for
string processing, dynamically defined objects, and other
edge cases. We found that prior program slicing optimiza-
tions [19] still have timeouts due to the many functions
inside of npm components that need to be resolved before
the program slicing optimizations can occur. COSSETER
overcomes this challenge using demand driven analysis.
In doing so, COSSETER reduced the analysis time of the
top-used actions-checkout Action from timing out after
multiple days to completing in a matter of minutes.

Challenge 3 - Permission Extraction: There is no single,
unified way to use permission protected GitHub functional-
ity. Some approaches require a context-sensitive analysis to
determine the correct permissions, such as a network call
using a GitHub API route. Others require the ability to in-
terpret exec calls to determine CLI commands. COSSETER
handles all major cases of privileged functionality including
GitHub API routes, Octokit methods, environment variable
access, and Git CLI execution. Handling these cases allows
COSSETER to extract many highly privileged permissions
from Actions that would be missed from a simpler analysis.
COSSETER also includes a lightweight analysis of Bash-
based workflow steps to extract permissions required for
raw GitHub API calls.

Results: We evaluate COSSETER in several ways. First,
we compare COSSETER’s ability to automatically determine
MINPERMS for a given JavaScript Action to manual labeling
by the company StepSecurity. While we found that nei-
ther approach is perfect, COSSETER’s permission labeling
is comparable to manual labeling, suggesting that it can
significantly scale the process. Second, we evaluated the se-
curity impact of using COSSETER to reduce the permissions
granted to GitHub workflows. Using a subset of the ARGUS
dataset [8] of 1,842 workflows, we show that COSSETER can

name: build-test-deploy

1
2 permissions:

3 contents: read

4 on: push

5 jobs:

6 build:

7 steps:

8 - name: checkout repo

9 uses: actions/checkout@v3
10 - name: use node.js

11 uses: actions/setup-node@v3
12 - run: npm install

13 - run: npm run build

14 deploy:

15 needs: build

16 permissions:

17 contents: write @

18 pages: write

19 id-token: write

20 steps:

21 - name: checkout repo

22 uses: actions/checkout@v3
23 - run: npm install

24 - run: npm run build

25 - name: deploy

26 id: deployment

27 uses: actions/deploy-pages@vl

Listing 1: Example of a workflow file which builds and
deploys a Next.js application on GitHub pages. Permissions
denoted with @ are not required by this workflow; permis-
sions with €2 are.

reduce the high severity of 76% by limiting permissions.
Finally, we demonstrate the insufficiency of GitHub’s read-
only default policy. Using subsets of the broader ARGUS
dataset of 1.2 million workflows and over 10,000 JavaScript
Actions, we show that 50% need a permission beyond the
default, thereby demonstrating the need for automated tools
to help developers specify permissions.

Contributions: This paper makes contributions in two areas.
First, COSSETER advances the state-of-the-art for static
program analysis of JavaScript applications. Specifically,
it (1) provides the capability to statically analyze packed
JavaScript applications, and (2) further optimizes ODG con-
struction using demand driven analysis. Second, COSSETER
enables the static derivation of MINPERMS for GitHub
workflows. Its analysis capabilities of JavaScript Actions
alone has distinct value and can be used to massively
expand datasets manually labeled with permissions, which
are used by existing industry tools. We show GitHub’s
new read-only default permission policy is insufficient for
50% of workflows, and enhancing developer tooling with
COSSETER suggested permissions can significantly reduce
the risk of vulnerabilities in GitHub workflows. The source
code for COSSETER is available at https://github.com/s3c2/
cosseter [20].

2. Background

The GitHub Actions CI platform was released in 2018.
It integrates directly into GitHub repositories and captures
most events that users trigger while interacting with repos-
itories. Workflows and Actions are distinct concepts in the
GitHub Actions ecosystem.

https://github.com/s3c2/cosseter
https://github.com/s3c2/cosseter

TABLE 1: Permissions available in workflow specifications. We classified permissions as high, medium, or low sensitivity.

Scope | Description | High | Medium | Low
actions Workflow and Action data such as artifacts, runs, and caching. write read
contents Stored repository code access such as merging, committing, and pushing. write read
checks Check Suites functionality such adding, re-running, and changing results write, read
deployments Code Deployment modifications such as statuses, adding and deleting. write read
discussions Access to user discussion creation, reactions, deletion. write read
id-token JWT-Token generation. Used for specific, higher authenticated routes for apps. | write, read
issues Repository issues creation, commenting, and deletion. write read
packages Reading and changing release packages and uploads. write read
pages Affect the status of GitHub Pages through uploads, health, and deletion. write read
pull-requests Pull request process such as create, commenting, labeling. It does not have write read
access to merging or changing the code of currently open pull requests. It can
only create new ones.
repository-projects | Repository Project access to create, add issues, add collaborators, etc. Orga- write read
nization projects do not fall into this and need a PAT.
security-events Access to code scanning alerts and scans. write, read
statuses View and add commit statuses. write read

Workflows: Workflows are YAML files stored under the
.github/workflows folder of GitHub repositories. List-
ing 1 shows an example workflow that is triggered on
push events to the repository. As the name suggests, the
workflow builds, tests, and deploys the project. Workflows
are made up of several jobs (listed under the jobs key),
which are independent entities to be executed in isolated
environments. However, a job might depend on other jobs,
and dependencies are specified using the needs key, e.g.,
the deploy job depends on build in Listing 1. Each job
consists of a sequence of steps executed in that order. A
step can be a shell command (e.g., npm install on Line
23) or can invoke Actions using the uses key, e.g., the step
at Line 11 invokes actions/setup-node@v3 Action.

Actions: Actions are programs that are referenced and used
within workflows to perform commonly repeated tasks. Ac-
tions are predominately written in JavaScript, but they can
also be Composite (a similar syntax to a workflow) or a
Docker container [21]. These Actions can be created by the
developers of the workflows and stored within the workflow
repository or can be third-party open-source repositories.

GitHub Token and Permissions: Workflow execution uses
a capability model to grant access the repository and associ-
ated functionality. Specifically, each workflow run is passed
an ephemeral GITHUB_TOKEN capability, which has associ-
ated permissions. Developers can modify these permissions
within the workflow specification using the permissions
keyword (as seen in Listing 1). These permissions can be
specified at both the workflow level (Lines 2-3) and the
job level (Lines 16-19). Job-level permissions are added to
workflow permissions for the corresponding job. GitHub
recommends configuring permissions at the job level, as
each job could require permissions that the others do not.
Permissions are defined as <scope>:<access>, where
<scope> indicates the entity and <access> indicates the
type of access allowed for that entity (i.e., read or write).
For instance, content:read grants read access to repos-
itory contents. Similarly, issues:write enables write
access to creating or closing issues. Note that a *:write

permission implicitly includes the corresponding *:read
permission. There are 15 unique scopes, of which 13 are
described in Table 1. GitHub recently added a new scope,
attestation, which we do not consider as we did not find
any uses of the scope in our analysis. metadata is also not
listed, as it is included in every workflow run.

Table 1 shows our categorization of permissions into
high, medium, and low sensitivity, which is based on the
ease with which the permission enables modification to the
repository’s code or code artifacts (e.g., releases). High per-
missions enable direct modification to the code or code arti-
facts (e.g., contents:write). Medium permissions do not
directly allow modifications but allows certain actions which
can exploit vulnerable workflows (e.g., issues:write).
Low permissions allow only read-only access and cannot
allow modifications to the repository (e.g., pages:read).

Default Permissions: If a GitHub organization was cre-
ated before February 2023, its repositories are given a
GITHUB_TOKEN with write permissions for all scopes by
default. For GitHub organizations created after February
2023, the default permissions were reduced to only read
for the contents, metadata, and package scopes [10].
Other permissions must be explicitly declared using the
permissions keyword. For repositories associated with per-
sonal accounts (i.e., not associated with an organization), the
default is determined by the creation date of the repository.

3. Motivation

Code injection vulnerabilities are widespread in GitHub
workflows and Actions [8], [22]. For example, Muralee et
al. [8] discovered that code injection vulnerabilities in 4,307
workflows and 80 Actions can be exploited to gain complete
control of the target repository by using GITHUB_TOKEN.

What We Need: An effective way to reduce the impact
of vulnerabilities associated with GitHub workflows is to
reduce the permissions of GITHUB_TOKEN. Specifically, we
need to provide only the required permissions (MINPERMS)
to GITHUB_TOKEN for each job within a workflow.

1 function downloadArchive(authToken, owner, repo, ref,
— commit, baseUrl) {

2 return __awaiter(this, void 0, void 0, function* () {
3 const octokit = github.getOctokit(authToken, ...);
4 const download = IS_WINDOWS

5 ? octokit.rest.repos.downloadZipballArchive

< (Contents: Read)
6 : octokit.rest.repos.downloadTarballArchive;
< (Contents: Read)

8 s

10

Listing 2: Simplified code from actions/checkout that
contains a API call to GitHub endpoint using the Octokit
Library (indicated by €2)

1 const axios = __nccwpck_require__(6545)

2 .

3 class Deployment {

4 .

5 async create(idToken) {

6 const pagesDeployEndpoint = "${this.githubApi}/repos/" +
< " ${this.repositoryNwo}/pages/deployment’

7 e

8 const response = await axios.post(pagesDeployEndpoint,
< payload, { (Pages: Write)

9 headers: {

10 Accept: 'application/vnd.github.v3+json',

11 Authorization: 'Bearer ${this.githubToken} ,

12 'Content-type': 'application/json'

13 }

14 }

15

Listing 3: Simplified code from actions/deploy-pages that
contains an HTTP API call to GitHub using network func-
tions (indicated by € where the route is created at [*¥)

The Problem: Identifying MINPERMS for a job and, con-
sequently, a workflow is a hard problem due to the use
of external Actions. Consider the workflow in Listing 1
designed to build, test, and deploy the project. At the
workflow level (Lines 2-3), the GITHUB_TOKEN is given only
contents:read permission, and the build job (Line 6)
inherits this permission; intuitively, this seems reasonable
as the build job needs to access the repository to build
the software. The deploy job (Line 14) needs to deploy
the latest version of the product, i.e., needs to update the
releases tab; intuitively, this needs certain write access
to the repository. Specifically, it needs pages:write and
id-token:write. However, developers have unncessarily
added the contents:write permission as indicated by €.
Detecting such cases is nontrivial and requires an under-
standing of all steps within the deploy job.

For shell command steps, i.e., npm ... (on Lines 23-
24), it is relatively straightforward. However, for steps that
call external actions, i.e., actions/checkout (Line 22)
and actions/deploy-pages (Line 27), we need to ana-
lyze their corresponding code. Few Actions do not access
the repository and do not require any permissions, e.g.,
actions/setup-node [23]. However, most external Ac-
tions require specific permissions.

Listing 2 shows a simplified code snippet of the
actions/checkout Action [24]. This action uses

Cosseter

H Pack

V| Anal

'

' '
' '
1 | Octokit/Gi 1
1+ | Extraction | [
' '
'

'

'

'

'

\
'
'
'
—_—

i

i

Permission !
Scopes

Nownnl
Er388 s

Workflow File

Routes E Updated
' Permissions

' o
H Y

:
S * |Permission| ! a/ 8 8 :
Bash Analysis | Extraction |

Updated

"""" \ A Workflow File

Command |\
Identification | |
'

o
— Routes !

Route H
Extraction | !

Figure 1: Overview of COSSETER

GitHub’s Octokit npm library, which provides a JavaScript
wrapper around nearly all GitHub API routes. The
repos.downloadZipballArchive (on Line 5) and
repos.downloadTarballArchive (on Line 6) calls both
require the contents:read permission. To identify this,
we need to know the permissions needed for individual
functions of GitHub’s Octokit npm library and identify
which calls are reachable.

Not all Actions use the clearly identifiable Octokit li-
brary calls. For example, Listing 3 shows a simplified code
snippet from the actions/deploy-pages action [25]. In-
stead of using Octokit, it uses the Axios network library
to directly make an HTTP REST call (Lines 8-14) to a
route (defined at Line 6), which requires the pages:write
permission. Furthermore, there are accesses to environment
variables that require additional permissions, e.g., to access
the ACTIONS_RUNTIME_TOKEN environment variable at Line
6 in Listing 4, which requires id-token:write permission.

With the above information, we can determine that the
build step requires only contents:read permissions due
to its use of actions/checkout Action. On the other hand,
the deploy job is over-privileged and needs pages:write
and id-token:write permissions (because of actions/-
deploy-pages) and does not need contents:write.

4. COSSETER

COSSETER uses static analysis to identify a MINPERMS
permission policy for each job in a GitHub workflow.

4.1. Overview

For each workflow, COSSETER begins by extracting
an intermediate representation of the YAML-based work-
flow specification (WIR). COSSETER traverses the WIR to
extract relevant information, including all jobs and steps
for each job. It categorizes each step into different types,
the majority being either a shell or action step. For each
step, COSSETER generates a permission summary. Finally,
the step-level permission summaries are combined using
WIR information to produce a least-privilege permission

policy for the corresponding job. A high level overview of
COSSETER is shown in Figure 1.

COSSETER’s step-level permission analysis differs based
on the step type. Currently, COSSETER handles two types of
steps: JavaScript Actions and inline Bash. These two types
of steps comprise the overwhelming majority of step types
used in workflows. Prior work [8] found that 70% of Actions
are developed in JavaScript. Similarly, we found that 97% of
inline scripts are developed in Bash. That said, COSSETER
is modular, making it easy to extend to other types of actions
or shell script languages.

Handling JavaScript Actions: Step permission analysis of
JavaScript Actions is the primary technical contribution of
this paper. As discussed in Section 3, JavaScript Actions
invoke privileged functionality in a multitude of complex
ways. To identify the permissions required by a JavaScript
Action, we need a precise call graph to identify these calls
and the capability to identify string argument values.

As JavaScript is dynamically typed, statically extracting
call graphs and string values passed to methods is non-
trivial, requiring fine-grained and context-sensitive analysis.
Specifically, there are two main challenges with JavaScript
Actions: (1) many JavaScript Actions are packed into single
files with array-based lookups to resolve function calls; and
(2) significant state explosion occurs for string processing,
dynamically defined objects, and other edge cases.

To overcome the challenge of packed JavaScript Actions,
COSSETER performs a pre-pass to extract the key-value pairs
of the lookup ID (PackID) of the array to the anonymous
function that represents the packed dependency. We explain
this pre-pass in more detail in Section 4.2.1. COSSETER
overcomes the state explosion problem using demand driven
analysis. Specifically, COSSETER delays performing an in-
depth analysis on a statement until it is determined necessary
to (a) resolve an object that would extend the control flow
graph to a sink of interest or (b) resolve the value of a string
passed to a network sink of interest. Our demand-driven
analysis significantly reduces the number of timeouts in our
experiments. We describe this analysis in Section 4.2.2.

JavaScript Actions that use network requests of HTTP
route strings pose two challenges for COSSETER: (1) the
HTTP route string needs to be resolved, and (2) routes
resolved need to be verified as GitHub API routes to extract
permissions. We use Object Dependency Graph (ODG) to
capture route strings through accurate control and data flow
analysis, using data dependencies to craft string values.
These strings are validated using regex after extraction,
which will allow future work to perform analysis on all route
strings, regardless of their connection to GitHub API. This
permission extraction process is described in Section 4.2.3

Handling Inline Bash Scripts: Our permission analysis of
Bash scripts uses custom Semgrep [26] analysis rules to
identify commonly used Bash commands. A key challenge
was identifying which commands require permissions, as the
current documentation lacks this information. For example,
there are 10 different git subcommands that require con-
tents:read (e.g., git fetch-pack) and 7 git subcom-

mands that require contents:write (e.g., git read-tree,
which is non-intuitive from the name). COSSETER uses the
results of the Semgrep analysis to generate a permission
summary for each inline Bash script. In contrast to the
JavaScript Action analysis, the inline Bash script analysis
directly propagates values from the workflow into the script
before analysis to enhance the analysis accuracy. For ex-
ample, workflows commonly define inline Bash scripts that
are templated with event-driven data (e.g., pull request ID).
Since COSSETER’s workflow analysis is heavily based upon
prior work [8], and the core technical contribution of this
paper is the analysis of JavaScript Actions, we describe
COSSETER’s Bash analysis in Appendix A.

MINPERMS Generation: Using the summaries generated
for JavaScript Action and inline Bash script steps, COS-
SETER generates a set of used permissions for each job
within a workflow. To compute the permissions for a given
job, COSSETER unions the permissions. The resulting set
of permissions can either be presented to the developer as
a suggestion or automatically integrated into the workflow
specification. We leave this integration as an engineering
effort for future work.

4.2. Analyzing JavaScript Actions

Given a JavaScript Action, our high-level idea is to
construct its Object Dependency Graph (ODG) and then
analyze it to identify the relevant entities (i.e., API and
network calls) that require permissions and then combine
these permissions.

Object Dependency Graph (ODG): ODGs are similar
to Program Dependence Graphs (PDGs) [27] in that they
both are graphs with directed edges of data and control
dependencies. A key difference between the two is that an
ODG represents JavaScript objects as nodes and creates fine-
grained data dependencies between them instead of just on
statements as done with a PDG. Figure 4 depicts a sim-
plified version of an ODG with generated abstract objects.
In addition to call edges, an ODG also contains argument
values (e.g., via abstract interpretation), which can be used
to determine URL strings for network calls. While there
are many fine grained edge types between objects, Figure 4
simplifies them into a general edge for readability. ODGs
were first introduced by ODGen [18] and later enhanced into
ODGen-FAST [19] by adding multiple passes. However, as
mentioned in Section 4.1, the prevalence of packing and
deeper dependencies makes ODG construction of JavaScript
Actions challenging.

4.2.1. Resolving Packed JavaScript Actions. The direct
integration of GitHub Actions into the GitHub platform
offers many benefits, but also contains drawbacks. Depen-
dency resolution issues are prevalent, because GitHub is
designed as a source forge and not a package manager.

NCC Packaging: Documentation on creating JavaScript
Actions suggest practices to alleviate dependency issues by
compiling (packing) all of the dependencies of an Action

= (N,E,s,Br),(f,a.f,p) = (Ny, Ef, sy, Bry), (a1,a.a1,p) = (Na,, Ea, : Sa,, Bra,)

(an,a.an,p) = (Na,, Ba,,, 54,, Bra,)

=
(flar,...,an),a,p) = (U;; No, US. UL, ’Ifna‘.U7:1 E,, U {AddEdge:z?. Vse € Se} U Ecau U Eyo, Se, Br)

Pua = {(AdANOde™, aly). Yty € ader}s S i= {Paal0]. ¥pua € Pua}, ages = {Childg ", Vo' € Child2 7}, Eoan = {AddEdge"i&‘,
f

where = {(se, AddNode!™, ,Child3°), Vs, € S., Vi € {1,.

a.a; a.a

if {adefvvadef € adef; aor € Npa} then pckScopes := S

13} Vnas 1= {Pooll], Yoo € Puo}s Euo := {AddEdge” o

,Vpsd € Psa}
peall]

Puo € Puo, 99}, [2] € puol2]) PRE CALD)

vo 119, (2

p= (N,E,s,Br),(f(a1,.. ., @n), Ape, p) = ppes (B, ap, ppc) = pB

G aap) (Npo» Epy o5, B Call
b " (Npp U{ngo := AddOb]“bJ} U {n¢, := AddNode ;50 }, By U Esy U Ey U Epes, s, Br) New
or s
B :={d'.B,¥a € Childj™"}, ., = {AddEdge] " — o}, Buo = {AQIEdge’ "5}, Brewi= {AdEdge!2"),
- no

where ={o,0 € Childy"°,0 € Chlldaﬂ(’}
= call}

if s € Chlld’”‘ ,Sp € pckScopes then Vc ={v,ve Chﬂd“*" v.name =

(CALL, NEW)

Opck == {0,0m € ChlldVHQ,X € Childg~Vv}

Figure 2: COSSETER adds packer handling to the ODG operational semantics. Bold represents COSSETER’s additions.

1 8041:
2 (function(__unused_webpack_module, exports,
— __nccwpck_require__) {
3 class OidcClient {
4 e
5 static getIDTokenUrl() {
6 const runtimeUrl =
< process.env['ACTIONS_ID_TOKEN_REQUEST_URL'];

7 if (!runtimeUrl) {
8 throw new Error('Unable to get

< ACTIONS_ID_TOKEN_REQUEST_URL env variable');
9 }
10 return runtimeUrl;
11 }
12 .
13 static getIDToken(audience) {
14 return __awaiter(this, void 0, void 0, function* () {
15 try {
16 let id_token_url = OidcClient.getIDTokenUrl();
17
18 1,
19 e
20 2186:
21 (function(__unused_webpack_module, exports,

—» __nccwpck_require__) {

22 const command_1 = __nccwpck_require__(7351);
23 const file_command_1 = __nccwpck_require__(717);
24 const utils_1 = __nccwpck_require__(5278);
25 const os = __importStar(__nccwpck_require__(2087));
26 const path = __importStar(__nccwpck_require__(5622));
27 const oidc_utils_1 = __nccwpck_require__(8041);
28 L.
29 function getIDToken(aud) {
30 return __awaiter(this, void 0, void 0, function* () {
31 return yield

< oidc_utils_1.0idcClient.getIDToken(aud);
2 >N
33 }
34 L
35 }

Listing 4: A simplified sample of packed JavaScript found
in actions/deploy-pages. 8041 is the array lookup for
OidcClient, which contains methods that require the id-
token:write permission. 2186 is the lookup for core,
which is referenced in multiple other listings.

together using NCC [28]. The resulting packed file becomes
the new main file listed in the action.yaml [29].

The packing process for NCC and similar tools combines
all files into one large file, replacing the original require
statements with a dynamic abstract lookup instead. The
replacement require function (which we call NccReq) is

passed an id that is randomly generated for each dependency
during packing. This id serves as an index in a map to
an anonymous function that wraps the dependency. NccReq
uses the id to evaluate the mapped anonymous function and
generate the module object as if it were required regularly.
Listing 4 shows examples of the mapping on Lines 1-18 and
20-35. It also shows an example of NccReq on Lines 22-27,
with Line 27 showing a call corresponding to the mapping
of 8041 on Lines 1-18.

Packing alleviates dependency resolution for JavaScript
Actions, but it complicates static analysis in two ways: (1) it
adds a large amount of dynamic calls, which can make it
hard to statically analyze; and (2) it removes file information
for the dependency, which removes metadata most analysis
techniques use to reduce the analysis load. These issues are
particularly problematic for ODG generation, since current
generation techniques only support normal require state-
ments and have no way of handling this dependency style.

Pack Dependency Analysis: To handle issues added by
packing, we designed a pack dependency analysis that builds
a dependency tree of packed ids to extract key value pairs of
pack ids to function definition AST nodes. This is all done
as a pre-pass meant to extract all pack information before
generating a full ODG. Figure 3 is an example of a pack
dependency tree with reductions discussed in Section 4.2.2.

We will build upon the prior work [18] to generate
the ODG. Specifically, Figure 2 highlights COSSETER’s
changes to the operational semantics of ODG generation
to extract the object that contains the mapping of pack
ID to npm dependency. COSSETER begins by identifying
the set of all AST definition nodes for NccReq, denoted
as N, C N. Before interpreting a given AST call node,
COSSETER checks to see if that call is a NccReq call by
verifying that a/;, ¢ is an AST node found within Np,. If
this call is a NccReq call, then the set of scope objects (S..)
is gathered to later verify an internal call statement within
NccReq. For this pass, any other call is ignored and is not
interpreted. This allows COSSETER to build the dependency
tree alone without having to interpret any other objects.

In NccReq, the call to the anonymous function attached
to the pack id is done through the call prototype of the
anonymous function. Therefore, to extract the map object

Legend
Parent — Dependency
Placeholders
[Uninterpreted|

MAIN

=

2186 284 2877

1327, 7351,

5278,2081 ——— | |
13 Transitive
2087 .. 5622 7 8041 Dependencies A\‘\ 6545 1319
17 Transitive 1 l
Dependencies ()
)C 1404 2618
& 1587, 4831,
> e e R
8605
7211 | .. | 2843 4294 8190 328 8178 7065 4850 .. 4322
6 Transitive TN N\
Dependencies * () (| | 5062 3214 1632 646
e | N

Figure 3: Demand-driven analysis drastically reduces the
amount of code COSSETER needs to analyze. This fig-
ure shows a dependency tree of packed modules for
actions/deploy-pages. Packed modules roughly corre-
spond to npm packages.

which holds all of the pack id mappings, COSSETER must
trace backwards from the call to the map object. This is
done by first verifying that the current scope (s) has a
direct scope edge to the NccReq scope (sp). COSSETER
then traces back up the edges from the definition object
of the call o.. v, represents the property name node for
call with a parent edge to o,, which is the anonymous
function definition object. With o,,, COSSETER can capture
the parent property name node edge connection to =, which
represents the pack id. As x is connected to 0 similar to
how v, is connected to o,,, COSSETER is able to extract
opck, Which represents the map object.

If no AST definition node is found for NccReq, then
this pass is skipped, as there is no packing to handle. Once
the pre-pass has finished, COSSETER extracts the internal
mapping of pack id to function definition AST nodes to
be used in later passes. Before moving onto the next pass,
COSSETER removes all generated objects and edges begins
the control flow pass from the starting AST node again.

Using the extracted map object, COSSETER creates an
internal mapping of pack id to the anonymous function
declaration AST node. With this mapping, COSSETER cre-
ates abstract objects to represent the module objects the
anonymous functions expect as input for every pack id
individually. Any exports generated during the interpretation
of the anonymous function are then added as property
edges to these objects. By returning the exports equivalent
module object, COSSETER can resolve these require calls as
if it were a normal require statement, including caching of
already interpreted pack ids.

4.2.2. Demand Driven Analysis of Function Calls. The
state-of-the-art technique [19] of building ODG is extremely
inefficient for JavaScript Actions. We found several cases

const core = __nccwpck_require__(2186)

const { Deployment } = __nccwpck_require__(2877)

const deployment = new Deployment()

async function cancelHandler(evtOrExitCodeOrError) {
await deployment.cancel()
process.exit(isNaN(+evtOrExitCodeOrError) ? 1 :
< +evtOrExitCodeOrError)

o LA W —

7}

8 async function main() {

9 let idToken = ''

10 try {

11 idToken = await core.getIDToken()

12 } catch (error) {

13 console.log(error)

14 core.setFailed(Ensure GITHUB_TOKEN has permission
<« "idToken: write".")

15 return

16 }

17 try {

18 await deployment.create(idToken)

19 await deployment.check()

20 } catch (error) {

21 core.setFailed(error)

22 }

23 }

24 process.on('SIGINT', cancelHandler)
25 process.on('SIGTERM', cancelHandler)
26 const emitTelemetry = core.getInput('emit_telemetry')

27 if (emitTelemetry === "true') {}
28 else {

29 main(Q)

30 }

Listing 5: The entry point for actions/deploy-pages
whose ODG is depicted in Figure 4. The definitions of
Deployment and core are in Listings 3 and 4.

where the technique does not finish even after multiple
days of analysis. For example, GitHub’s top-used Action
(actions-checkout) timed out after one week. We per-
formed a detailed investigation of possible sources of time-
out and identified a range of different code idioms that
caused state explosion and repeated analysis of code blocks.
Furthermore, the infringing code blocks occurred in npm
dependencies deep in the transitive dependency graph. In
contrast, we observed that the privileged calls that CoOS-
SETER cares about were often invoked only a few levels
deep in the JavaScript Action call graph. These observations
led to the insight that combining demand-driven analysis of
function calls with program slicing has the potential to avoid
unnecessary abstract interpretation and hence avoid the state
explosion leading to timeouts.

ODGen-FAST [19] generates the ODG using a two-pass
approach. The first pass generates a rough control flow, and
the second pass generates data flow and object dependencies.
The time for the second pass depends on the complexity of
the data dependencies and object accesses. Specifically, this
involves transitively interpreting the abstract values for each
object and its dependencies for control flow paths to sinks of
interest. However, not all data flows and object dependencies
for those control flow paths are needed for our permission
analysis. Specifically, if an object is not involved in any call
to a sensitive API or network call, then we do not need to
interpret it and process its dependencies. We perform our
demand-driven analysis based on this insight.

The demand-driven analysis used within COSSETER

Listing 5
)
(2]

deployment)---;
Deployment()

cancelHandler

cancelHanlder
Definition

emitTelemetry)- - - »(if (emitTelemetry)
| True

core.getinput()

ODG Edge Interpreted
_— >

[Conditional |
Privledged
Placeholders
Uninterpreted

CFG Edge

Access Access Handled

Location ™ Node

getIDToken
Definition

PpagesDeployEndpoin

Figure 4: COSSETER uses demand driven analysis to resolve edges for the Object Dependence Graph (ODG). This figure
shows a simplified ODG for the code in Listing 5. The node colors green, yellow, blue, and grey indicate the extent to
which a node was analyzed in-depth when the analysis completed. COSSETER does not interpret blue and grey nodes.

hinges on the different uses of data as it gets interpreted
or passed during the generation of the ODG. We identified
two different usage types, Access and Reference, which are
similar to def and use, with some key differences with
respect to our analysis. Access refers to when an abstract
object is used in the interpretation of another abstract object.
In most cases, an object is accessed if it is a callee or is
connected to the callee of a call statement. For instance, in
a method call, the abstract object that represents the parent
needs to be accessed and interpreted to generate the nodes
corresponding to the method in order to be able to interpret
the method call. Reference refers to when an abstract object
gets passed without a need for interpretation, e.g., setting
the value of a variable.

This Access/Reference model allows the analysis to de-
lay interpreting large parts of the code until it is determined
necessary for generating the inter-procedural control flow
paths connected to privileged functions, or an associated
value is passed as input to privileged functions. Intra-
procedural control flow paths are evaluated differently, since
COSSETER treats conditional statements as references. Re-
turning an ambiguous result allows COSSETER to explore
all possible relevant paths control flow paths extracted in
the control flow pass (Pass 1).

Creating and Handling Demanded Objects: Algo-
rithms 1 & 2 describe COSSETER’s placeholder creation for
dependencies. By default, any file (or packed) dependency
and their export references are first created as placeholders.
Module placeholders (Algorithm 1) contain all the metadata
required to later interpret a dependency. Listing 5 contains
two direct packed dependencies of 2186 (Listing 4) and
2877 (Listing 3).

Algorithm 1: Creation of “module” placeholder
objects for demand driven analysis.

Input: ODG graph G; Call AST node of the required
file a.; Argument objects passed to the call args
QOutput: Result objects
pid < args|0].values[0]
if pia in G.packCache then
| return G.packCache[piq)
ay < packldToFunc(piq)
Oc, Om, pckr < packAstToArgs(ay)
oy < getFuncDeclObjs(ast Node = ay)
op < G.addBlankObject()
op.functionObject < oy
op.callAst < a.
op.moduleObject < 0,
op.exportsObject <— o,
op.packerFunction <— pckr
op.packID < p;q
op.functionScope +— G.scope
return o,

LIRS B Y N

L e <
N RN N =S

For 2186, a module placeholder is created and set to
the core variable node. Until the call is made to getID-
Token on line 11, it remains a placeholder. The second
dependency 2877 creates a module placeholder as well, but
also creates an export-property placeholder for the export
Deployment using Algorithm 2. The distinction between
these placeholder types is to alleviate interpreting an entire
dependency to generate an export object that has no data
dependence for the control flow path to sinks.

Algorithm 3 describes handling when a placeholder is
accessed, which begins the interpretation of the dependency

Algorithm 2: Creation of “export-property” place-
holder objects for demand-driven analysis

Input: ODG graph G; Parent placeholder object op;
Property name of the export propName
1 if propName == « then

2 | Pass

3 else

4 Opn <— getPropNameNode(obj = op,, propName =
propName)

if o, is None then
0ep < G.addBlankObject()
0¢p-howToHandleParent < o,
0ep.demandedProp < propName
addPropNameAndObject(obj = op,, propObj =
Oep, propName = propName)

o ® aa »m

Algorithm 3: Handler for “module” & ‘“export-
property” placeholders in demand-driven analysis.

Input: ODG graph G; Current placeholder object o,;
Abstract replacements AR
Output: Set of objects O

1 dp < op.demandedProp > Is none if no prop access
2 if dp is not None then

3 Oold <— Op

4 ‘ 0p < op.howToHandleParent

5 0f,Qc,Om, Oc, PCkT, pia, sy < getPlaceholderFields(oy)
6 origScope <— G.current_scope

7 (G.scope < s¢ > Function Scope
8 callFunction(oy, ac, [0ec, Om, pckr])

9 0cc < getPropertyObject(o,,, "exports")

10 for name, exObjs in getProperties(oc.) do

11 if name == dp then

12 | O < exObjs

13 end

14 if dp is None then

15 | O [oe]

16 else

17 for edge, typ in getinEdges(o,) do
18 removeEdge(o,, edge)

19 addEdge(oc., edge)

20 end

21 Op <— Oold

22 (G.scope <— origScope

23 for edge, typ in getinEdges(o,) do

24 removeEdge(o,, edge)

25 for rObj in O do

26 | addEdge(rObj, edge)
27 end

28 end

29 G.packCache[piq] + €cc
30 return O

(e.g., 2877 on line 3 of Listing 5). Since Deployment
is an export object, O, becomes the module object for
2877 and the metadata attached is gathered. That metadata
is used to interpret 2877 as if it were being interpreted
on it’s original statement. Note that 6545 and any other
dependencies are also created first as a placeholders and
will only be interpreted if they are accessed. That is, the
recursive analysis only goes as deep as needed. For this

dependency’s interpretation, only the definition object is
created for the Deployment class and its method definition
objects for create and check. Once interpretation is com-
plete, exObjs which represent the objects for Deployment
are set to the output of this handle, since it was what was
accessed. The edges that represented the placeholders of
both Deployment (o,4) and 2877 (o,) are removed and
added to the objects exObjs and o, respectively.

As seen in Figure 4, both methods called on Lines
18 and 19 of Listing 5 are not interpreted. Only create
is interpreted, since it is on the inter-procedural control
flow path. check and all other dependencies used for that
method are left uninterpreted. Dependency reduction can
be shown even more for the getIDToken method call.
Out of the six dependencies required for 2186, only one
dependency is needed to interpret the method to arrive at the
environment access for the id-token:write token on Line
6 of Listing 4. Figure 3 shows the reduction of interpreted
direct and transitive dependencies using these methods.

Another placeholder type is created for function calls
that are on the intra-procedural control flow path, but not
the inter-procedural control flow path. Previously, these
functions were fully interpreted, as their resulting values
could lead to generating objects needed to continue any
control flow path. However, due to the nature of GitHub
Actions, not all of the functions called along the intra-
procedural path have a connection to the next statement.
For instance, the process.on and core.getInput have no
impact on the generated objects needed to find privileged
function calls within main. Therefore, COSSETER skips
interpreting these calls and creates placeholders that are
similar to module placeholders. When the result of these
calls are demanded, they are interpreted and used to continue
the inter-procedural control flow path. The class constructor
call for Deployment was created as this kind of placeholder
before it was demanded to resolve create.

4.2.3. Resolving Permissions. There are multiple types of
privileged functions that require permissions. COSSETER
extracts permissions for four major types: (1) GitHub API
routes passed as strings into network functions; (2) Octokit
method calls; (3) Accessing environment variables that only
exist when a certain permission is set; and (4) Git command
line calls using exec and similar wrappers.

Route Context Resolution: The GitHub API is accessible
through network requests, but not all network requests used
within Actions are privileged. COSSETER requires context
of the call site to be able to: (1) filter out network calls
that are not related to GitHub API; and (2) capture the
exact routes and or route objects being passed into network
calls. As seen in the motivating Listing 3 on Lines 6 and 8§,
COSSETER must be able to extract the values for the variable
pagesDeployEndpoint to determine the privileged status
of the network function call axios.post.

COSSETER begins by finding control flow paths to any
potential network related method call. These are calls such
as http.request and are found by matching the name of
the method against common network related sinks. Once

control flow paths have been found, COSSETER performs its
demand driven ODG generation described above to create
the fine-grained data flow to these calls. COSSETER uses
the ODG to extract data dependencies of inputs passed to
the calls to create the potential input strings passed. These
strings are generated using a constraint solver that builds
upon the dependencies generated during interpretation. The
result of this constraint solver is to generate every possible
combination of dependent string slices.

The extracted routes (i.e., possible strings for arguments)
are passed along to COSSETER’s permission extractor as
shown in Figure 1. We created a mapping of all possible
routes, along with the required permissions, by analyzing
the official documentation — a one-time task. We match
the extracted routes to our mapping to identify the required
permissions. There could be cases where the extracted routes
could be composed of data constraints and do not have an
exact match in our mapping. We use pattern matching based
on regular expressions to handle this. Examples of regex
strings used can be found in Appendix C.

Octokit Method Extraction: GitHub provides the Octokit
JavaScript library to ease the development of Actions. Oc-
tokit is an abstraction of the GitHub API. This abstraction
adds to the complexity of analysis in two ways: (1) it
contains many extraneous dependencies for compatibility,
and (2) all of the methods with permissions are generated
dynamically at runtime. While adding dependencies is no
longer an issue due to our demand-driven analysis, dy-
namically generated methods can make it hard to statically
analyze the functions they are meant to represent. During
ODG generation (Pass 2), it is not possible to generate defi-
nition objects for all of the methods. Therefore, any method
that does not have a definition becomes an uninterpretable
method and is left out of the analysis.

While Octokit methods are dynamically generated, we
found that their parent-child pairs are uniquely identifiable
(eg. octokit.repos.get). Using these unique call sites allows
COSSETER to identify if a method and parent pair has a
control flow path to it in Pass 1, without having to match
its function definition object by name alone. If a control flow
path is found to one of these methods, the privileged func-
tion can be extracted without the need for in-depth context
of the dependencies on the Octokit object or its inputs. All
of the generated methods are tied to a template route, which
match the permission mapping described above. COSSETER
can then extract the permissions for these calls using their
corresponding template route mapping without any heavy
context sensitive analysis.

Privileged Environment Access: Use of the id-token
permission (Table 1) is not done through a func-
tion call, but rather by accessing specific environment
variables available during a workflow run. The to-
ken is stored as, and requested using, the environment
variables ACTIONS_ID_TOKEN_REQUEST_TOKEN and AC-
TIONS_ID_TOKEN_REQUEST_URL.

To identify use of the id-token permission, COSSETER
identifies all accesses to these environment variables using

demand-driven analysis. Specifically, COSSETER only tracks
environment property lookups that match the two variable
names if there exists a control flow path to them. If a path
exists, COSSETER includes the id-token:write permis-
sion as a required permission.

Git Command Line Usage: Actions, albeit rarely, can
directly access the repository using git commands (e.g.,
‘‘git pull’’) through exec or explicit wrappers such
as GitCommandManager. We observed that these com-
mands are constant strings in most cases, e.g., exec(‘ ‘git
pull’’). COSSETER captures all the reachable commands
by using special handlers during control flow analysis and
identifies the corresponding permissions.

4.3. Implementation

We built COSSETER’s functionality on top of prior work
(ARGUS [8], ODGen-FAST [19]) and open source analysis
tools (Semgrep [26]). We used ARGUS’s WIR to extract the
JavaScript Action and Bash shell step dependencies of a
workflow. We implemented our Bash analysis using Sem-
grep, which is one of the only maintained open source static
analysis tools with support for Bash scripts. We generated
custom Semgrep rules to match our analysis needs.

We made significant changes to the state-of-the-art ODG
generator (ODGen-FAST) for our graph generation. Aside
from the implementation of our new technique, we also
made changes to its parsing and handling of new JavaScript
patterns found within the Actions of our dataset to reduce
overall generation errors. This includes crucial builtins such
as Object.defineProperty and TypeScript conversion
functions like __awaiter. We also overhauled the class
object handling for both Pass 1 and Pass 2, which increased
our coverage dramatically. These changes increase coverage
of JavaScript in newer ECMA versions. We also found and
fixed major bugs dealing with function call resolution in
Pass 1 across dependency files. This includes optimizations
on lookup and edge creation functions to reduce redundancy.
We plan to push our changes upstream upon paper accep-
tance.

5. Evaluation

We evaluate COSSETER via the following questions.

Q1 How does the precision and recall of COSSETER’s
automatic extraction of Action permissions compare to
manual approaches?

Q2 What is the precision and recall of COSSETER’s ex-
traction of permissions for Bash shell steps?

Q3 How effective are the extracted permissions at reducing
known vulnerabilities?

Q4 What is the landscape of permissions required by
GitHub workflows?

5.1. Q1: COSSETER vs. Manual (JavaScript)

COSSETER is the first tool to automatically extract per-
mission requirements from a given JavaScript Action. This

TABLE 2: COSSETER vs. manual approaches for JavaScript Actions. Different dataset subsets were used for each approach.

Permission GitHub Dynamic Step Security COSSETER

C/GT \ P \ R C/GT \ P \ R C/GT \ P \ R
actions:write 2/8 1.00 | 0.25 7710 1.00 | 0.70 9/9 0.89 | 0.89
contents:write 20/25 | 1.00 | 0.80 29 /32 | 097 | 0.88 16 /22 | 094 | 0.68
deployments:write 0/0 - - 1/1 1.00 | 1.00 1/1 1.00 | 1.00
id-token:write 1/2 1.00 | 0.50 3/6 1.00 | 0.50 4/4 0.75 | 0.75
packages:write 0/1 - 0.00 2/2 1.00 | 1.00 0/2 - 0.00
High Permission Total \ 23/ 36 \ 1.00 \ 0.64 H 42 /51 \ 0.98 \ 0.80 H 30/ 38 \ 0.90 \ 0.71
actions:read 1/2 1.00 | 0.50 5717 1.00 | 0.71 2/4 1.00 | 0.50
checks:write 3/4 1.00 | 0.75 8/9 0.88 | 0.78 4175 1.00 | 0.80
checks:read 0/1 - 0.00 2/2 1.00 | 1.00 2/2 1.00 | 1.00
issues:write 12717 | 0.92 | 0.65 23/26 | 096 | 0.85 19720 | 1.00 | 0.95
pull-requests:write 11721 | 1.00 | 0.52 33/35 | 094 | 0.89 26 /31 | 1.00 | 0.84
repository-projects:write 0/0 - - 1/1 1.00 | 1.00 0/1 - 0.00
security-events:write 0/0 - - 1/1 1.00 | 1.00 1/1 0.00 | 0.00

statuses:write 0/1 - 0.00 1/1 1.00 | 1.00 0/0 - -
Medium Permission Total \ 27147 \ 0.96 \ 0.55 H 74/ 83 \ 0.95 \ 0.84 H 54/ 64 \ 0.98 \ 0.83
contents:read 0/0 - - 19/28 | 0.84 | 0.57 19/20 | 0.89 | 0.85
issues:read 2/1 0.50 | 1.00 2/3 0.50 | 0.33 1/1 1.00 | 1.00
pull-requests:read 7/13 0.86 | 0.46 12/14 | 1.00 | 0.86 5/11 1.00 | 045
statuses:read 0/1 - 0.00 0/2 - 0.00 2/2 1.00 | 1.00

Low Permission Total

| 8714 | 075 | 043 || 33/47

| 0.88 | 0.62 || 26/33 | 0.92 | 0.73

GT = count identified in ground truth dataset; C = count identified by the tool; P = precision; R = recall

subsection compares COSSETER’s precision and recall to
two manual approaches: (1) the manual annotations made by
a software supply chain company (Step Security) [30], and
(2) executing Actions and monitoring them with GitHub’s
actions-permissions dynamic analysis tool (GitHub Dy-
namic) [17]. We note that using actions-permissions to
monitor an Action requires significant manual configuration
of a workflow to properly use the Action functionality.

Dataset: We created a ground truth dataset by performing
a detailed manual inspection whenever the annotations of
COSSETER, Step Security, or GitHub Dynamic did not
agree. We started with a set 254 JavaScript Actions anno-
tated by Step Security as of April 2024 [31]. We measured
the precision and recall of each approach using different sub-
sets. For COSSETER, we selected a subset of 188 JavaScript
Actions. The remaining are either minified (48), which is
not supported by COSSETER (see Section 6), or COSSETER
timed out or had an error (18). For the GitHub Dynamic
approach, we selected a different subset of 155 Actions.
For each action, we manually created sample inputs and
stopped when the Action returned a completed status. We
removed actions that had errors which we could not resolve
(32) or could not easily setup to run in our testing repository
(19). We also removed any Actions that require a third-party
API key (48). We performed a detailed manual inspection
of a JavaScript Action if either (a) the annotations of the
three approaches did not agree, or (b) only one annotation
was found for a given action. For actions with just two
annotations, we inspected them only if the two disagreed.
In total, 4 graduate students with knowledge of JavaScript
Actions manually inspected 140 Actions, each by at least

two students.

Results: Table 2 shows the precision and recall for the three
datasets. The table is organized by permission to highlight
challenges in identifying different API calls. COSSETER had
> 89% precision for 12 of the 14 permissions. The low
precision for the other two permissions results from only one
misclassification for each permission. COSSETER’s recall
was similar to the manual annotation by Step Security. It
had lower recall on contents:write due to four out-of-
scope cases with respect to our analysis with an example
in Appendix B. Note that issues and pull_requests are
ambiguous: the same HTTP route is used for both, and the
backend determines which permission is used based on the
value of the identifier passed to the API. Therefore, we did
not penalize COSSETER’s precision for including this extra
permission. The developer of the workflow can easily refine
this permission based on the type of value they pass to the
Action. Finally, the GitHub Dynamic approach performed
the poorest of the three. A subset comparison of only actions
all three tools could analyze can be found in our online
appendix [32].

Takeaway: COSSETER has precision and recall compa-

rable to manual approaches for extracting permissions
from JavaScript Actions.

5.2. Q2: Bash Accuracy

In contrast to JavaScript Actions, no prior work has
attempted to extract permissions from Bash steps.

TABLE 3: Vulnerable Workflow Severity Reduction

EXISTING Total COSSETER Reclassification Any
Classification | Count | High | Medium | Low | None | Reduction
High 1,274 251 266" 511 246 964
Medium 568 - 272 173 123 296

* 59 of the medium sensitive permissions were already specified by developers
on the workflow. These are not included in the “Any Reduction” column.

Dataset: We started with the ARGUS [8] dataset and se-
lected a subset of 1.4 million workflows which contained
only Bash and JavaScript Actions. We randomly sampled
2,881 workflows for manual annotation by a group of 6 grad-
uate students knowledgeable in supply chain security and
GitHub workflows. Each student was tasked with searching
for commands requiring permissions, e.g., git, gh, and
network calls to the GitHub API. Reviewers worked with the
workflow Bash step only and did not evaluate any outside
scripts or action steps. At least two students annotated each
workflow and differences were resolved through discussion.
COSSETER analyzed 2,854 of the 2,881 sampled workflows.

Results: We measured Bash step precision and recall for the
workflow as a whole instead of per permission pair. A large
majority of the permissions came from git calls, which only
corresponds contents permissions. 2,601 (91%) workflows
did not require any permissions; COSSETER correctly ex-
tracted no permissions for 2,548. COSSETER has 53 false
positives. These were mostly due to extracted git com-
mands not being related to the repository containing the
GitHub workflows. In total, COSSETER correctly extracted
all permissions for 241 of 253 (95%) Bash steps.

Takeaway: COSSETER extracts all Bash step permis-
sions in workflows with 95% recall.

5.3. Q3: Vulnerability Mitigation

ARGUS [8] found a large number of easily exploitable
vulnerable workflows. It categorized all found vulnerabilities
into three distinct severities: (1) High severity were vulner-
abilities where attackers had full control of data (e.g. an
issue title) (2) Medium severity vulnerabilities require some
developer intervention to exploit (e.g. requires a specific
label to run) (3) Low severity vulnerabilities give attackers
limited data control (e.g. username). We now evaluate how
COSSETER can reduce permissions and mitigate the impact
of exploitation.

Dataset: ARGUS reported 3,687 high and 7,770 medium
severity vulnerability workflows. To be conservative in COS-
SETER’s ability to mitigate vulnerabilities, we exclude work-
flows that it could not handle. Specifically, we only con-
sidered workflows with JavaScript Actions and Bash steps.
This consisted of 1,908 high and 3,746 medium workflows.
We excluded workflows using a JavaScript action that was
minified (665) or for which COSSETER timed out or had an
error (237). Workflows were also excluded if the repository

was missing the main file?> (1554) or it was a mixture of
minified and missing (1356). Our final dataset consisted of
1,274 high and 568 medium severity workflows.

Results: We consider a vulnerable workflow to have a
reduced impact if it is assigned a permission sensitivity
lower than the severity. For example, if a high severity vul-
nerability is given a medium or lower sensitivity permission,
it has a reduced impact. To be conservative, we calculate
mitigation at the workflow level rather than the job level.
Table 3 shows COSSETER’s ability to reclassify impact
severity. For the high severity dataset, developers had al-
ready specified medium sensitive permissions for 59 work-
flows. COSSETER suggested permissions can reduce 76 %
of the vulnerable workflows (964 out of 1,274) to medium
or lower permissions; 59% (757 out of 1,274) required low
or lower permissions. For the medium severity dataset, the
reduction was similar: 52% (296 out of 568) reduction.
Low permissions on workflows gives attackers less than or
equivalent abilities than any authenticated user on GitHub.
Therefore, COSSETER can reduce attackers ability to affect
the repository for 57% of workflows across both datasets.

Takeaway: COSSETER suggested permissions can re-
duce the impact of 76% of high severity vulnerable
workflows.

5.4. Q4: Ecosystem-wide Permission Needs

We now study the landscape of permission needs of
GitHub workflows to better understand the need for a
tool such as COSSETER to help developers specify permis-
sions. For example, we seek to understand how applicable
GitHub’s new default policy is for repositories created be-
fore the change, and whether or not it could be retroactively
applied to older repositories.

Dataset: We again used the ARGUS [8] dataset. It is a
snapshot of workflows from 2018 - 2022 (before the de-
fault change). As above, we excluded workflows with steps
COSSETER cannot handle. In total, we created a dataset of
1.2 million workflows spanning 267,391 repositories. COS-
SETER was run on a total of 9,140 JavaScript Actions and
9,645,943 Bash shell steps. Of these Actions, COSSETER
was able to extract permission summaries for 8,353 (91%)
with 3,504 Actions having some kind of permission (38%).
For Bash shell steps, only 17,399 (<1%) were not able to be
analyzed by COSSETER and 437,854 (5%) hade some kind
of permission extracted.

Results: Table 4 shows COSSETER’s reported permission
needs organized by permission severity. Only 52% of work-
flows require Low severity permissions. This is similar to
the 50% of workflows that require only GitHub’s new read-
only default policy. The percentages for repositories are
consistent with workflows. The other 50% requires explicit
permission specification. We found that only 16% (192,498

2. The file run when an action is called is specified in the action.yaml.
For some actions, the specified file did not exist in the repository.

TABLE 4: COSSETER Ecosystem Permission Classification

Classification

Level Total High | Medium | Low | None 2023 Defaults
Repo 267,391 109,354 18,347 134,786 4,904 133,358
Workflow 1,232,170 336,510 151,894 640,364 103,402 621,721
Job 2,152,808 675,523 178,611 1,108,679 189,995 1,055,718
Step (All) 18,035,596 | 1,503,515 319,936 4,143,683 | 12,068,462 3,994,203
JavaScript Action 8,389,653 1,296,729 289,923 3,942,628 2,860,373 3,810,586
Bash Shell 9,645,943 206,786 30,013 201,055 9,208,089 183,617

out of 1,232,170) workflows have permissions explicitly set,
and only 14% (36,978 out of 267,391) of repositories set
permissions for all of their workflows.

Another interesting observation is that most of the per-
missions are found in JavaScript Action steps (92% of
all steps with permissions). This observation demonstrates
that most the privileged functionality exists in third-party
actions. However, contrary to JavaScript Action steps, Bash
shell steps have a higher percentage of High classified
permissions (47%) compared to (23%).

Takeaway: The 2023 default permission policy set for
new repositories does not capture the needs of workflows
for 50% of repositories. 92% of permission requirements
come from third-party JavaScript actions.

6. Threats to Validity

Threats to Internal Validity: COSSETER extends ODGen-
FAST [19]. We fixed many bugs (see Section 4.3); however
COSSETER inherits all other limitations. The demand-driven
approach interferes with the ability to accurately handle
global variables changed within non-interpreted functions.
COSSETER also misses all calls made inside of scripts called
from JavaScript (e.g., via child_process, exec). Input sources
from the workflows are marked within the analysis, but
no attempt is made to remove calls based on any control
dependence. While COSSETER captures calls made to the
GitHub API, it does not consider calls made to other APIs.
Therefore, an attacker can target third party data even if
workflows are running with default read permissions. The
integrity of build artifacts can sometimes be compromised
through these APIs.

Threats to External Validity: Our datasets were con-
structed as subsets of workflows from prior work [8]. We
further limit the dataset to workflows that only use Bash
or JavaScript Action steps. We excluded workflows with
composite, local, or docker Actions, or any non-Bash shell
scripts. We also excluded workflows with JavaScript Actions
that used minification, or for which COSSETER timed or
errored out. This exclusion criteria reduced the number
of workflows available to analyze, which may impact the
percentage of possible vulnerable workflows that could po-
tentially have their severity reduced.

7. Related Work

Permission Reduction: Automatically suggesting a min-
imal set of permissions for code execution is a classic
security research problem [14], [15], [16] that continues to
be relevant today [33], [34], [35], [36]. Various techniques
have been employed to extract minimal permission sets,
including static [37], [38] and dynamic [39], [40] based
approaches. Given that permission models vary significantly
across different ecosystems, researchers have developed spe-
cialized solutions for generating minimal permissions in
various systems, including Linux Capabilities [41], [42], An-
droid Applications [11], and JavaScript Applications [43].
However, these techniques are not directly applicable to
GitHub Actions due to the platform’s unique permission
architecture and the diverse programming languages utilized
in GitHub workflows.

GitHub Actions: Several studies have investigated security
dimensions of GitHub Actions, including large-scale analy-
ses of bad practices [44], code injection vulnerabilities [8],
[22], [45], [46], [47], and LLM-based workflow generation
and security assessment [48]. Additionally, runtime monitor-
ing tools [49], [50], [51], [52] have been developed to dy-
namically observe workflow execution and detect anomalous
behaviors. While existing work addresses various vulnera-
bilities and classifies their severity based on permissions, it
has not focused on configuring workflow permissions as a
primary mitigation strategy.

Javascript Analysis: JavaScript is a widely-used program-
ming language with many applications [53], [54]. Like
all programming languages, it is susceptible to vulnera-
bilities [55], [56], [57], [58]. To address potential issues
in applications, various static [59], [60], [61] and dy-
namic [62], [63], [64], [65] analysis techniques are avail-
able for JavaScript. Most recently, FAST [19] proposed a
scalable abstract interpretation to quickly generate ODGs
of JavaScript scripts to find taint-style vulnerabilities. How-
ever, FAST times out on real-world JavaScript Actions and
requires the optimizations we propose in this paper.

8. Conclusions

Vulnerabilities in GitHub Actions are a growing threat
for the software supply chain. Developers can set permis-
sions on GitHub workflows to mitigate the risk of vulner-

abilities; however, permissions require developers to under-
stand the permission needs of third-party JavaScript Actions.
We proposed the COSSETER static analysis tool that auto-
matically determines the set of minimum permission needed
by each job in a GitHub workflow. In doing so, COSSETER
overcomes state explosion challenges in JavaScript Actions
using demand-driven analysis and a pre-pass to handle pack-
ing. We applied COSSETER to an existing dataset of vulner-
able workflows and found that permission suggestions can
reduce the severity of 76% of high severity code injection
vulnerabilities. Its automated analysis of JavaScript Actions
can also scale efforts to annotate permission needs and
immediately benefit existing software supply chain tools.

Acknowledgments

We thank the reviewers for their feedback on improving
the paper. This work was supported by the US National Sci-
ence Foundation (NSF) under Grants CNS-2207008, CNS-
2247686, and CNS-2247688. This manuscript reflects the
views of the authors and not those of NSF.

References

[1] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson Education, 2010.

[2] “Travis CI - Test and Deploy Your Code with Confi-
dence,” https://travis-ci.org/.

[3] “Continuous Integration and Delivery - CircleCL,” http
s:/[circleci.com/.

[4] “Set up Automated CI Systems with GitLab,” https:
//about.gitlab.com/stages-devops-lifecycle/continuou
s-integration/.

[S] “Github Actions,” https://github.com/features/actions.

[6] A. Ilgayev, “How We Discovered Vulnerabilities in
CI/CD Pipelines of Popular Open-Source Projects,”
Mar. 2022. [Online]. Available: https://cycode.com/b
log/github-actions-vulnerabilities/

[7] “Vulnerable GitHub Actions Workflows Part 1:
Privilege Escalation Inside Your CI/CD Pipeline.”
[Online]. Available: https://www.legitsecurity.com/bl
og/github-privilege-escalation-vulnerability

[8] S.Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl,
B. Reaves, A. Bianchi, W. Enck, A. Kapravelos, and
A. Machiry, “ARGUS: A Framework for Staged Static
Taint Analysis of GitHub Workflows and Actions,” in
Proceedings of the USENIX Security Symposium, 2023.

[9] Tinder, “Exploiting GitHub Actions on open source

projects,” Jul. 2022. [Online]. Available: https:

//medium.com/tinder/exploiting- github-actions-on-ope

n-source-projects-5d93936d189f

GitHub, “Github actions updating the default

github_token permissions to readonly,” https://github.b

log/changelog/2023-02-02-github-actions-updating-t
he-default-github_token-permissions-to-read-only/.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,

“Android Permissions Demystified,” in Proceedings of

[10]

[11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

the ACM Conference on Computer and Communica-
tions Security (CCS), 2011.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie,
“PScout: Analyzing the Android Permission Specifi-
cation,” in Proceedings of the ACM conference on
Computer and Communications Security (CCS), 2012.
M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau,
, and S. Weisgerber, “On demystifying the android
application framework: Re-visiting android permission
specification analysis,” in Proceedings of the USENIX
Security Symposium, 2016.

S. Forrest, S. A. Hofmeyer, A. Somayaji, and T. A.
Longstaff, “A Sense of Self for Unix Processes,” in
Proceedings of the IEEE Symposium on Security and
Privacy, 1996.

D. Wagner and R. Dean, “Intrusion Detection via Static
Analysis,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2001.

L. Koved, M. Pistoia, and A. Kershenbaum, “Access
Rights Analysis for Java,” in Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA), 2002.

“GitHub token permissions Monitor and Advisor ac-
tions,” https://github.com/GitHubSecurityLab/actions
-permissions.

S. Li, M. Kang, J. Hou, and Y. Cao, “Mining Node.js
Vulnerabilities via Object Dependence Graph and
Query,” in Proceedings of the USENIX Security Sym-
posium, Aug. 2022.

M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou,
V. Venkatakrishnan, and Y. Cao, “Scaling JavaScript
Abstract Interpretation to Detect and Exploit Node.js
Taint-style Vulnerability,” in Proceedings of IEEE Sym-
posium on Security and Privacy (S&P), 2023.

G. Tystahl, J. Ghebremichael, A. Kapravelos, and
W. Enck, “Cosseter source code archive,” Oct. 2025.
[Online]. Available: https://doi.org/10.5281/zenodo.1
7345506

GitHub, “About custom actions,” https://docs.github.
com/en/actions/creating-actions/about-custom-actions.
G. Benedetti, L. Verderame, and A. Merlo, “Automatic
Security Assessment of GitHub Actions Workflows,” in
Proceedings of the ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses
(SCORED), 2022.

“Set up your GitHub Actions workflow with a specific
version of node.js.” https://github.com/actions/setup-n
ode.

GitHub, “Checkout actions,” https://github.com/actio
ns/checkout.

“GitHub Action to publish artifacts to GitHub Pages
for deployments.” https://github.com/actions/deploy-p
ages.

“Semgrep OSS is a fast, open-source, static analysis
tool for searching code, finding bugs, and enforcing
code standards at editor, commit, and CI time.” https:
//github.com/semgrep/semgrep.

https://travis-ci.org/
https://circleci.com/
https://circleci.com/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://github.com/features/actions
https://cycode.com/blog/github-actions-vulnerabilities/
https://cycode.com/blog/github-actions-vulnerabilities/
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability
https://www.legitsecurity.com/blog/github-privilege-escalation-vulnerability
https://medium.com/tinder/exploiting-github-actions-on-open-source-projects-5d93936d189f
https://medium.com/tinder/exploiting-github-actions-on-open-source-projects-5d93936d189f
https://medium.com/tinder/exploiting-github-actions-on-open-source-projects-5d93936d189f
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.blog/changelog/2023-02-02-github-actions-updating-the-default-github_token-permissions-to-read-only/
https://github.com/GitHubSecurityLab/actions-permissions
https://github.com/GitHubSecurityLab/actions-permissions
https://doi.org/10.5281/zenodo.17345506
https://doi.org/10.5281/zenodo.17345506
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://github.com/actions/setup-node
https://github.com/actions/setup-node
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/actions/deploy-pages
https://github.com/actions/deploy-pages
https://github.com/semgrep/semgrep
https://github.com/semgrep/semgrep

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The
program dependence graph and its use in optimiza-
tion,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 9, no. 3, 1987.

vercel, “ncc simple cli for compiling a node.js module
int oa single file, together with all its dependencies,
gee-style,” https://github.com/vercel/ncc.

GitHub, “Create a javascript action,” https://docs.githu
b.com/en/actions/creating-actions/creating-a-javascrip
t-action.

“Step Security Homepage.” https://www.stepsecurity.i
ol.

“StepSecurity knowledge base.” https://github.com/ste
p-security/secure-repo/tree/main/knowledge-base/acti
ons.

G. Tystahl, J. Ghebremichael, S. Muralee,
S. Cherupattamoolayil, A. Bianchi, A. Machiry,
A. Kapravelos, and W. Enck, ‘“Permission
comparison for cosseter, step security, and
github dynamic,” Oct. 2025. [Online]. Available:

https://doi.org/10.5281/zenodo.17341657

A. P. Felt, K. Greenwood, and D. Wagner, “The Effec-
tiveness of Application Permissions,” in Proceedings of
the USENIX Conference on Web Application Develop-
ment (WebApps), 2011.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna,
and E. Chin, “Permission Re-Delegation: Attacks and
Defenses,” in Proceedings of the USENIX Security
Symposium, 2011.

S. T. Peddinti, I. Bilogrevic, N. Taft, M. Pelikan, U. Er-
lingsson, P. Anthonysamy, and G. Hogben, “Reducing
Permission Requests in Mobile Apps,” in Proceedings
of the Internet Measurement Conference (IMC), 2019.
K. W. Y. Au, Y. E Zhou, Z. Huang, P. Gill, and
D. Lie, “Short paper: A Look at Smartphone Permis-
sion Models,” in Proceedings of the ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices (SPSM), 2011.

J. Tang, R. Li, H. Han, H. Zhang, and X. Gu, “Detect-
ing permission over-claim of android applications with
static and semantic analysis approach,” in Proceedings
of the IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications
(TrustCom), 2017.

A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon,
“Static analysis for extracting permission checks of a
large scale framework: The challenges and solutions
for analyzing android,” IEEE Transactions on Software
Engineering, vol. 40, no. 6, pp. 617-632, 2014.

P. C. Amusuo, K. A. Robinson, T. Singla, H. Peng,
A. Machiry, S. Torres-Arias, L. Simon, and J. C.
Davis, “Ztdjayva: Mitigating software supply chain
vulnerabilities via zero-trust dependencies,” 2024.
[Online]. Available: https://arxiv.org/abs/2310.14117
P. Centonze, R. J. Flynn, and M. Pistoia, “Combining
Static and Dynamic Analysis for Automatic Identifica-
tion of Precise Access-Control Policies,” in Proceed-
ings of the Annual Computer Security Applications

[41]

[42]

[43]

[44]

[45]

[40]
[47]

(48]

[49]

[50]
[51]

[52]

(53]

[54]

[55]

[56]

[57]

Conference (ACSAC), 2007.

S. E. Hallyn and A. G. Morgan, “Linux capabilities:
making them work,” in Linux symposium, vol. 8, 2008.
“Linux Capabilities and Seccomp.” https://docs.redha
t.com/en/documentation/red_hat_enterprise_linux_at
omic_host/7/html/container_security_guide/linux_capa
bilities_and_seccomp.

N. Vasilakis, C.-A. Staicu, G. Ntousakis, K. Kallas,
B. Karel, A. DeHon, and M. Pradel, “Mir: Automated
Quantifiable Privilege Reduction Against Dynamic
Library Compromise in JavaScript,” arXiv preprint
arXiv:2011.00253, 2020.

I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Mu-
ralee, B. Reaves, A. Kapravelos, and A. Machiry,
“Characterizing the Security of Github CI Workflows,”
in Proceedings of the USENIX Security Symposium,
Aug. 2022.

“CodeQL Queries From GitHub,” https://github.com/g
ithub/codeql/blob/main/javascript/ql/src/Security/CW
E-094/Expressionlnjection.ql.

“Raven - CI/CD Security Analyzer,” https://github.c
om/CycodeLabs/raven.

“poutine - security scanner,” https://github.com/boost
securityio/poutine.

X. Zhang, S. Muralee, S. Cherupattamoolayil, and
A. Machiry, “On the Effectiveness of Large Language
Models for GitHub Workflows,” in Proceedings of the
International Conference on Availability, Reliability
and Security (ARES), 2024.

“Harden-Runner by StepSecuity,” https://github.com/s
tep-security/harden-runner.

“Bolt Action,” https://github.com/koalalab-inc/bolt.

P. Kumar and V. K. Madisetti, “Sher: A Secure Broker
for DevSecOps and CI/CD Workflows,” Journal of
Software Engineering and Applications, vol. 17, no. 5,
pp- 321-339, 2024.

“cimon action,” https://github.com/CycodeLabs/cimo
n-action.

D. Mitropoulos, P. Louridas, V. Salis, and D. Spinellis,
“Time Present and Time Past: Analyzing the Evolution
of JavaScript Code in the Wild,” in Proceedings of
the IEEE/ACM International Conference on Mining
Software Repositories (MSR), 2019.

S. Qiu, R. G. Kula, and K. Inoue, “Understanding
Popularity Growth of Packages in JavaScript Package
Ecosystem,” in Proceedings of the IEEE International
Conference on Big Data, Cloud Computing, Data Sci-
ence & Engineering (BCD), 2018.

C.-A. Staicu and M. Pradel, “Freezing the Web: A
Study of ReDoS Vulnerabilities in JavaScript-based
Web Servers,” in Proceedings of the USENIX Security
Symposium, Aug. 2018.

W. Song, Q. Huang, and J. Huang, “Understanding
JavaScript Vulnerabilities in Large Real-World An-
droid Applications,” IEEE Transactions on Depend-
able and Secure Computing, vol. 17, no. 5, 2020.

S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet,
and R. Berg, “Saving the World Wide Web from Vul-

https://github.com/vercel/ncc
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action
https://www.stepsecurity.io/
https://www.stepsecurity.io/
https://github.com/step-security/secure-repo/tree/main/knowledge-base/actions
https://github.com/step-security/secure-repo/tree/main/knowledge-base/actions
https://github.com/step-security/secure-repo/tree/main/knowledge-base/actions
https://doi.org/10.5281/zenodo.17341657
https://arxiv.org/abs/2310.14117
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/ExpressionInjection.ql
https://github.com/CycodeLabs/raven
https://github.com/CycodeLabs/raven
https://github.com/boostsecurityio/poutine
https://github.com/boostsecurityio/poutine
 https://github.com/step-security/harden-runner
 https://github.com/step-security/harden-runner
https://github.com/koalalab-inc/bolt
https://github.com/CycodeLabs/cimon-action
https://github.com/CycodeLabs/cimon-action

nerable JavaScript,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA),
2011.

[58] H. Onsori Delicheh, A. Decan, and T. Mens, “Quan-
tifying Security Issues in Reusable JavaScript Actions
in GitHub Workflows,” in Proceedings of the Inter-
national Conference on Mining Software Repositories
(MSR), 2024.

[59] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wag-
ner, K. Gibbons, J. Sarracino, B. Wiedermann, and
B. Hardekopf, “JSAI: a static analysis platform for
JavaScript,” in Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE), 2014.

[60] M. Madsen, B. Livshits, and M. Fanning, ‘“Practical
Static Analysis of JavaScript Applications in the Pres-
ence of Frameworks and Libraries,” in Proceedings of
the Joint Meeting on Foundations of Software Engi-
neering (ESEC/FSE), 2013.

[61] M. Madsen, F. Tip, and O. Lhotdk, “Static Analysis
of Event-Driven Node.js JavaScript Applications,” in
Proceedings of the ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2015.

[62] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An
Analysis of the Dynamic Behavior of JavaScript Pro-
grams,” SIGPLAN Not., vol. 45, no. 6, jun 2010.

[63] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi:
A Selective Record-Replay and Dynamic Analysis
Framework for JavaScript,” in Proceedings of the Joint
Meeting on Foundations of Software Engineering (ES-
EC/FSE), 2013.

[64] M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dy-
namic Type Inconsistency Analysis for JavaScript,”
in Proceedings of the IEEE/ACM IEEE International
Conference on Software Engineering (ICSE), 2015.

[65] K. Sun and S. Ryu, “Analysis of JavaScript Programs:
Challenges and Research Trends,” ACM Comput. Surv.,
vol. 50, no. 4, aug 2017.

[66] “Expressions and Operations.” https://developer.mozi
lla.org/en-US/docs/Web/JavaScript/Reference/Operat
ors.

Appendix A.
Inline Bash Script Analysis

COSSETER’s Bash analysis extracts each Bash shell
step and writes it to an individual .sh file. During this
process, workflow context (e.g., ${{github.event.issue.url}})
is replaced with variables ($VAR). This context is not
part of the Bash script and therefore must be interpo-
lated before Bash analysis. For example, interpolating
${{github.event.issue.url}} creates a GitHub API route such
as /repos/{OWNER}/{REPO}/issues/{ISSUE_NUMBER}
with the corresponding event data. COSSETER captures this
behavior by using the template route strings found within
GitHub API.

Once the GitHub actions variables are interpolated,
COSSETER performs its analysis using custom Semgrep [26]
rules. We designed three different types of rules: (1) cap-
turing CLI commands (e.g., git, gh), (2) network calls to
curl and wget with GitHub API routes passed as input, and
(3) general regex which match to all GitHub API routes.

Our custom rules to extract git and gh command and
flag pairs. These pairs correspond to the required permis-
sions. No prior documentation or work has identified the
permissions associated with these calls. Therefore, we man-
ually defined a mapping based on command documentation.
To extract the pairs, the custom rules use patterns to capture
both the command and flags (e.g., git $COM ... SFLAG
$VAL ...). The full list of the permission mappings and rules
for git and gh can be found in our code repository.

To extract GitHub API routes, COSSETER looks for the
use of curl and wget network CLI tools. The rule patterns
look for two things: (a) the route being passed as input to
the call; and (b) the network method attached to the url
(e.g., GET, POST). As wget and curl default to GET, we
also created a general pattern to extract the URL and add
GET into the result (e.g., curl $URL ...) We similarly extract
routes for gh api ROUTE calls.

Finally, we designed general regex rules that apply to
all GitHub API routes. These rules capture any use of the
routes missed by the above rules. The general regex strings
are described in Appendix C.

The Semgrep rules provide metadata about the Bash
scripts that COSSETER uses to create each step’s permission
summary. Similar to Actions, extracted routes are filtered
and verified to a part of the GitHub API. COSSETER maps
the routes and extracted commands to corresponding per-
missions and adds them to the summary. This summary is
referenced during the workflow analysis using a combination
of the workflow, job, and step ids.

Appendix B.
Out-of-scope contents:write

We observed in some cases that JavaScript actions called
external scripts. While we tried to handle the simpler cases
of git using exec or similar functionality, cases such as
the one showcased in Listing 6 were deemed out of scope
for our analysis. In this example, the action is dynamically
downloading an external dependency electron-builder
on line 11 provided by the users defined package. json
from line 9. Using this newly downloaded dependency, it
publishes a new release to GitHub by running the con-
structed cmd on line 16. Along with this, any external script
called from JavaScript actions in as similar way is also out
of scope for our analysis (e.g. .sh files).

Appendix C.
Regex For GitHub API Routes

COSSETER extracts route strings from various sources.
The extracted routes do not perfectly match the route

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators

1 const run = (cmd, cwd) => execSync(cmd, { encoding: "utf8",
< stdio: "inherit", cwd });

2 const getInput = (name, required) => {

3 const value = getEnv(INPUT_${name});

4 if (required !value) {

5 exit("${name}" input variable is not
< defined’);

6 }

7 return value;

8}

9 const pkgRoot = getInput(“'package_root", true);

10 log(Installing dependencies using ${useNpm ? "NPM" :
— "Yarn"}...');

11 run(useNpm ? "npm install" :

12 log('Building${release ? " and releasing" :
— app...);

13 const cmd = useVueCli ? "vue-cli-service electron:build" :
«s "electron-builder";

14 for (let i = 0; i < maxAttempts; i += 1) {

"yarn", pkgRoot);
""} the Electron

15 try {

16 run(

17 “${useNpm ? "npx --no-install” : "yarn run"}
— ${cmd} --${platform} ${

18 release ? "--publish always" : ""

19 } ${args}’,

20 appRoot,

21);

22 break;

23 } catch (err) {

24 if (i < maxAttempts - 1) {

25 log(Attempt ${i + 1} failed:);

26 log(err);

27 } else {

28 throw err;

29 }

30 }

31 }

32 -

Listing 6: A code simplified snippit from

samuelmeuli/action-electron-builder which

dynamically installs electron-builder and uses it to publish
a new GitHub release

templates listed in the GitHub API documentation.
Therefore, we generated regex strings that match each
route in the GitHub APL. For example, the regex string
(/?repos/(L/1+)?/7([/1+)?/1labels/[/\s’ "$]+)
corresponds to the /repos/owner/repo/labels/name
route. In some cases, the regex for one route matches
a longer version of the route (/repos/owner/repo/issues
vs /repos/owner/repo/issues/issue). When this occurs,
COSSETER uses the longer regex match.

Matching a route string to the template is insufficient
to identify permission needs. The permissions for some
routes depend on the network method (i.e., GET, POST,
etc). Therefore, COSSETER also obtains the method. When
the method is not given, COSSETER defaults to GET if the
route contains api.github.com. This default increases the
route extraction precision and reduces false positives not
related to the GitHub APIL

Appendix D.
JavaScript Network Sinks

Cosseter has the ability to resolve API strings passed
to network functions. These functions are discovered in
two ways: (1) Direct function calls (e.g. fetch(API));

TABLE 5: Demand Handler Types for Expressions

| EXPRESSION | Example | Type |
Property accessors MP.AP reference
Property accessors AP.property access
Property accessors Any[AP] access
Function Call AP() access
Function Arguement function(AP) access
Addition (+) AP + const access
Addition (+) AP + AP access
Addition assignment (+=) var += AP access
Addition assignment (+=) AP +=exp access
Assignment (=) var = AP reference
await await AP() access
Conditional (ternary) operator exp ? AP : Any reference
Conditional (ternary) operator AP ? Any : Any reference
Decrement (-) AP- access
delete delete object. AP reference
delete delete AP.property access
Destructuring assignment [a, b] = object. AP reference
Destructuring assignment [a, b] = AP.properties access
Equality Operators (==, !=, >, <) Any <= Any reference
Increment (++) AP++ access
Logical Operators (&&, II, !) AP && Any reference
new new AP() access
Object initializer object = Any: AP reference
Strict equality (=== AP === Any reference
Strict inequality (!==) AP !== Any reference
Subtraction (-) AP - Any access
Subtraction assignment (-=) AP -= Any access
Unary negation (-) -AP access
Unary plus (+) "+AP" access
void operator void (AP) access
yield yield AP access
while while(AP) reference
for for (AP, cond, inc) reference
for for (init, AP, inc) access
for for (init, cond, AP) access
for in for (v in AP) access
for of for (v of AP) access
if else if (AP) else reference
switch switch (AP) access

AP: Any Placeholder, MP: Module Placeholder Specifically, Any: Any Object

(2) Method function calls (e.g. https.get (API)). Both dis-
covery methods are looking for functions with the following
names: paginate, request, fetch, curl, get, post,
put, patch, del, getJson, post]son, putlson, and
patchJson. Direct function call discovery is mostly straight
forward for both passes, but method function discovery
has some nuance. While data-dependent relations cannot
be accurately discovered in the control flow pass, Cosseter
considers any method call which matches a name above as
potential sinks except for get. Since get is used pervasively
outside of network specific calls, Cosseter requires that it
must be attached to an object passed in from a dependency.

Appendix E.
Access / Reference for JavaScript Expressions

To perform the demand-driven analysis, COSSETER uses
hooks to determine when a given ODG object handle is an
Access or a Reference. We manually annotated expression
types using JavaScript language documentation [66]. Table 5
shows the list of all of the expressions and the corresponding
Access / Reference label.

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

The paper presents Cosseter, a static analyzer for GitHub
actions and workflows that automatically determines the
least privilege permissions required for any GitHub re-
sources those actions and workflows access. Cosseter pro-
poses the first practical dependency analysis for JavaScript
actions. The evaluation over 1 million actions and workflows
shows that Cosseter performs at least as well as manually
annotated datasets.

F.2. Scientific Contributions

Provides a New Data Set For Public Use

Creates a New Tool to Enable Future Science
Addresses a Long-Known Issue

Provides a Valuable Step Forward in an Established
Field

o Establishes a New Research Direction

F.3. Reasons for Acceptance

1) Cosseter represents the first practical automated static
analysis of JavaScript actions for permission identifi-
cation.

2) The authors plan to open-source Cosseter, supporting
future research building on their work.

F.4. Noteworthy Concerns

1) The paper does not fully validate that the permissions
suggested by Cosseter preserve the functionality of
GitHub actions and workflows.

2) The evaluation does not answer the question of whether
Cosseter, or manual annotations, actually compute least
privilege permissions.

3) Table 2 does not report results for a common subset that
all three evaluated methods can handle, which would
help interpret the effectiveness of the approach.

4) The approach does not support invocation of external
Bash scripts which are commonly used in GitHub
actions.

Appendix G.
Response to the Meta-Review

Concern 3: We considered several ways to present the
results presented in Table 2. We believe the current table

provides the fairest comparison of the three approaches
(COSSETER, Step Security, and GitHub Dynamic). Our
online appendix [32] provides a full break down of the
permissions extracted by each approach for the subset of
116 GitHub Actions.

	Introduction
	Background
	Motivation
	Cosseter
	Overview
	Analyzing JavaScript Actions
	Resolving Packed JavaScript Actions
	Demand Driven Analysis of Function Calls
	Resolving Permissions

	Implementation

	Evaluation
	Q1: Cosseter vs. Manual (JavaScript)
	Q2: Bash Accuracy
	Q3: Vulnerability Mitigation
	Q4: Ecosystem-wide Permission Needs

	Threats to Validity
	Related Work
	Conclusions
	References
	Appendix A: Inline Bash Script Analysis
	Appendix B: Out-of-scope contents:write
	Appendix C: Regex For GitHub API Routes
	Appendix D: JavaScript Network Sinks
	Appendix E: Access / Reference for JavaScript Expressions
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix G: Response to the Meta-Review

