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Abstract—Mobile malware attempts to evade detection during
app analysis by mimicking security-sensitive behaviors of benign
apps that provide similar functionality (e.g., sending SMS mes-
sages), and suppressing their payload to reduce the chance of
being observed (e.g., executing only its payload at night). Since
current approaches focus their analyses on the types of security-
sensitive resources being accessed (e.g., network), these evasive
techniques in malware make differentiating between malicious
and benign app behaviors a difficult task during app analysis.
We propose that the malicious and benign behaviors within apps
can be differentiated based on the contexts that trigger security-
sensitive behaviors, i.e., the events and conditions that cause the
security-sensitive behaviors to occur. In this work, we introduce
AppContext, an approach of static program analysis that extracts
the contexts of security-sensitive behaviors to assist app analysis
in differentiating between malicious and benign behaviors. We
implement a prototype of AppContext and evaluate AppContext
on 202 malicious apps from various malware datasets, and 633
benign apps from the Google Play Store. AppContext correctly
identifies 192 malicious apps with 87.7% precision and 95%
recall. Our evaluation results suggest that the maliciousness of a
security-sensitive behavior is more closely related to the intention
of the behavior (reflected via contexts) than the type of the
security-sensitive resources that the behavior accesses.

I. INTRODUCTION

The increasing popularity of smartphones has made them a
target for malware. App markets that distribute software (i.e.,
apps) to smartphones leverage both automated and manual
app analyses to detect malware (e.g., Google Bouncer [1] and
Apple App store [2]). To improve the effectiveness of app
analysis, existing research proposes approaches that extract
features from apps and compare those features against prede-
fined sets of signatures or patterns of malicious or privacy-
infringing behaviors, such as method calls, permissions, and
information flows [3]–[10].

Similar to PC malware, mobile malware has begun taking
steps to evade detection by camouflaging as benign apps [11].
For example, an app can hide malicious intentions by using
APIs that are appropriate for its expected functionality. As
another example, an app may present itself as a messaging
app that sends SMS messages when the user clicks the “send”
button. However, it also sends SMS messages containing
the user’s contact information in the background without
notifying the user. Since both of these apps use the same SMS
APIs, existing automated tools that consider method calls and
information flows are unlikely to distinguish between these

cases. Notably, the key difference between these two apps is
that the malicious app uses the SMS APIs under an unexpected
context.

A fundamental difference between malicious and benign
apps is that their design principles are different. The principles
guiding the design of benign apps are to meet requirements
from users. However, two basic principles [12] guide the
design of most malware are to (1) trigger the execution of
their malicious payload (i.e., the part of malware carrying
malicious behaviors) frequently to seek maximal benefits; (2)
evade detection to prolong their lifetime. Guided by these
principles, mobile malware leverages two major features of
mobile platforms as below.

Frequent occurrences of imperceptible system events.
Unlike traditional software, where events typically come from
standard user inputs (keyboards and mice), a large portion
of behaviors in mobile apps are driven by events from the
mobile system and its sensors [13]. Compared to UI-triggered
events, which rely on the user to perform a specific sequence
of UI interactions in a specific app, system events are much
more frequently triggered. Thus, malware often leverages
system events to increase the chances of invoking its malicious
payloads [4]. Moreover, system events can occur when the
user is not using the app or the device itself, malicious be-
haviors triggered by system events can easily evade the user’s
attentions, concealing the signs and traces of the malicious
behaviors.

Informative external-environment states. Mobile apps can
access numerous attributes of the external environment (e.g.,
locations and system time). These attributes often convey
useful information about the current states of the environment.
Such environment states are frequently exploited by malware
to actively control the execution of malicious behaviors. For
example, the DroidDream [14] malware family suppresses its
malicious behaviors during the day and invokes its malicious
payload only at night. Since app reviewers or automated
tools, such as Bouncer [1], can analyze apps for only a short
period of time and with limited variations of environmental
conditions, it is very likely that the reviewers and the tools
cannot detect the malware when the environmental conditions
that trigger the malicious behaviors are not met.

Based on the above-mentioned fundamental differences be-
tween malware and benign apps, we propose that the context in



which a security-sensitive behavior occurs is a strong indicator
of whether the security-sensitive behavior is malicious or
benign. Malware executes its malicious payloads only under
certain unique contexts to reach a balance between prolonging
its life time and increasing the chance of being invoked. Such
contexts are unique because a balance can be reached only
when malicious behaviors are invoked frequently enough to
meet the needs (e.g., a certain number of clicks per day to
improve search engine rankings of a website), but not too
frequently for reviewers/users or tools to notice the abnormal
behaviors of the app. On the contrary, most of the contexts for
benign behaviors are user interactive, and thus are exploited
less frequently by malware.

Expressing contexts in mobile apps is a non-trivial task.
In mobile apps, various elements could be used to describe
the contexts in which security-sensitive behaviors occur. How-
ever, due to the complex event-driven nature of mobile apps,
expressing the contexts using all the factors determining the
invocation of security-sensitive behaviors would incur huge
overhead in extracting the context information and extra
burden in differentiating benign behaviors from malicious
ones. Consider the example that a security-sensitive behavior
can occur only when an app component enters into the
lifecycle method that invokes the behavior. Android apps are
component-based and each component has a lifecycle [15].
Any factor changing the component’s state will determine
the invocation of the lifecycle method, thus determining the
invocation of the security-sensitive behavior. Since there are a
large number of these factors, such as messages sent by other
components, remote procedure calls by other components,
UI operations of users, and system events, incorporating all
these factors into the definition of context would make the
analysis for extracting contexts expensive and bring noisy data
in differentiating benign behaviors from malicious ones.

To express contexts concisely and yet capture the essence
to reflect intentions, we propose an abstraction of the contexts.
Such abstraction of the contexts should be detailed enough to
reflect the intentions of security-sensitive behaviors, but not
too redundant to include all the low-level detailed information
about system states. Our context definition is based on the
observation that activating conditions (e.g., events triggering
the execution of payloads) and guarding conditions (e.g.,
environmental attributes controlling the execution of payloads)
are the key elements of context information to differentiate
malicious behaviors and benign behaviors. Thus, we define a
context for a security-sensitive behavior as a tuple contain-
ing an activation event (the event that triggers the security-
sensitive behavior), and a series of context factors (environ-
mental attributes controlling the execution of the security-
sensitive behavior).

Although our context abstraction reduces the burden in
inferring context information, we still need to address two
challenges posed by mobile apps. First, inferring activation
events requires the analysis of the entry points of the app.
Unlike desktop programs that have only one entry point
for a program execution (i.e., the main function), a mobile

app usually has multiple entry points due to its event-driven
nature. Also, not all entry points of an app are triggered by
external events, and some of them are triggered by inter-
component communications (ICCs) [16] within the app. It is
possible that the program execution path from the entry point
triggered by an activation event to the invocation of a security-
sensitive behavior goes through a chain of components of the
app. Existing analysis can identify only the entry point of
each component, and thus cannot be directly applied to infer
activation events. Second, computing context factors requires
the analysis of control flows from the activation events to the
invocations of the security-sensitive behaviors. The ICCs in
apps complicate the analysis because a conditional statement
controlling the execution of ICCs may further control the
security-sensitive behaviors in the target component of ICCs.

To address these challenges, we propose AppContext, an ap-
proach that statically analyzes the security-sensitive behaviors
in an Android app. To extract activation events, AppContext
chains all ICCs within the app and constructs an extended
call graph (ECG) to infer activation events. To compute
context factors, AppContext combines the control flows of all
components from entry points triggered by activation events
to the method calls that trigger security-sensitive behaviors in
a reduced inter-procedure control flow graph (RICFG) [17],
and leverages information flow analysis [18] to identify the
environmental attributes that affect the control flows.

To leverage the extracted contexts for differentiating mali-
cious behaviors and benign ones, we transform these contexts
as features and use machine learning techniques, such as sup-
port vector machine (SVM) [19], to classify security-sensitive
behaviors as malware or benign ones. We use machine learning
techniques because the reasoning about the maliciousness of
a behavior is vague and subjective by nature. Simply using a
static threshold (e.g., the frequency of contexts) to differentiate
malicious and benign behaviors does not perform well because
it is difficult to determine a proper threshold. For many subtle
cases, machine learning techniques are desirable to detect
malware by taking multiple factors into account and making
decisions based on rich data sets statistically.

This paper makes the following main contributions:
• An approach, AppContext, to detect malware based on the

insight that the context of a security-sensitive behavior is
a strong indicator of the maliciousness of the behavior.

• An abstraction to model the contexts of security-sensitive
behaviors based on the two unique characteristics of
malware (activation conditions and guarding conditions).

• A static-analysis technique for context extraction, which
accurately identifies activation conditions and guarding
conditions for security-sensitive behaviors.

• Three evaluations on 846 Android apps to demonstrate
the effectiveness of AppContext.

II. BACKGROUND

Android Component. Android apps are composed of four
types of components. An Activity represents a user interface.
A Service represents a task being processed in the background.



ActionReceiver.OnReceive() 

Date date = new Date(); 
If(data.getHours>23 || date.getHours< 5 ){ 
   ContextWrapper.StartService(MainService); 
… 

MainService.OnCreate() 

DummyMainMethod() 

SendTextActivity$4.onClick() 

SplashActivity.OnCreate() 

SmsManager.sendTextMessage() 

long last = db.query(“LastConnectTime"); 
long current = System.currentTimeMillis(); 
If(current – last > 43200000 ){ 
   SmsManager.sendTextMessage(); 
   db.save(“LastConnectTime”, current); 
… 

SendTextActivity$5.run() 

MainService.b() 

ContextWrapper.StartService() 

(a) Part of the MoonSms’s call graph

(b) Code snippet of MoonSms’s manifest file

Fig. 1: Motivating Example in MoonSMS App

A Content Provider allows sharing of app-specific or system
data across apps. A Broadcast Receiver is a component that
receives broadcasted message objects, named as Intents.

Apps specify which content provider they access by us-
ing Uniform Resource Identifiers (URI). Content providers
may require that apps hold certain permissions to access
the providers. We name the content providers that require
permissions as security-sensitive content providers.

Android Permissions. Developers can restrict access to
Android components by using permissions. A component
protected by a permission can be accessed by only apps that
have obtained that permission. To access sensitive resources in
a component, an app must request corresponding permissions.
Permissions are declared in the Android Manifest (Android-
Manifest.xml). At installation time, Android presents the list
of permissions requested by the app. Users can either allow
all permissions or give up installing the app.

Intent. A common way for Android components to com-
municate with each other is to send Intent messages. An Intent
is a message that declares a recipient (by an action string or
specific component name) and optionally includes data. Intents
can be event notifications sent by the operating system to apps.
These Intents are triggered by system events that can be sent
only by the operating system. Permissions may be used to both
restrict who may receive an intent sent by an app, and restrict
who may send intents to a particular app. We name Intents
that require permissions to send or receive as security-sensitive
Intents. Sending or receiving a security-sensitive Intent is a
security-sensitive behavior.

III. A MOTIVATING EXAMPLE

To illustrate our approach, we use a simplified malware
example named MoonSms. MoonSms is a repackaged app
that carries both benign functionality and injected malicious
DroidDream [14] payloads. The benign functionality provides
a variety of festive greetings for SMS messages. Thus, it is
rational that MoonSms requests the SEND SMS permission.
Figure 1 shows that SmsManager.sendTextMessage (i.e., an
API method that uses the SEND SMS permission) is invoked

under three contexts. Each invocation of this method is a
security-sensitive behavior of the app.

The first invocation of SmsManager.sendTextMessage occurs
when the user clicks the “Send” button in an activity compo-
nent named “SendTextActivity”. When the “Send” button is
clicked, its onClick event handler spawns a new thread that
invokes SmsManager.sendTextMessage.

The second invocation of SmsManager.sendTextMessage
occurs when the signal strength of the device changes. When
the signal strength changes, the system broadcasts an Intent
containing the “SIG STR” action. MoonSms registers a broad-
cast receiver component named “ActionReceiver” (Lines 8-
12 in Figure 1(b)) to receive this Intent. When this Intent
is broadcasted, ActionReceiver is activated and its onReceive
method begins execution. ActionReceiver’s onReceive method
starts a service component named “MainService” by invoking
the startService API method (when the current time is between
11 pm and 5 am), which begins executing MainService’s
onCreate lifecycle method. Finally, MainService’s onCreate
method invokes another method named b, which calls Sms-
Manager.sendTextMessage.

The third invocation of SmsManager.sendTextMessage oc-
curs when MoonSms is launched. When the MoonSms
is launched, its main activity component, “SplashActivity”
(Lines 1-6 in Figure 1(b)), begins execution in its onCreate
lifecycle method. SplashActivity’s onCreate method invokes
SmsManager.sendTextMessage when the current time is at least
12 hours after the “LastConnectTime” is saved in a database.

In the preceding example, the first invocation is not mali-
cious because reviewers can analyze the content on the screen
and confirm that the security-sensitive behavior is expected
to occur. However, the second and third invocations cannot
be justified by the functionality that MoonSms is expected to
provide. By inspecting the behaviors, we find that the second
and third invocations are malicious because these invocations
send SMS to a confirmed malicious server.

This example demonstrates that the contexts of security-
sensitive behaviors are essential to differentiate between be-
nign and malicious behaviors, especially when the benign
functionality provided by apps may rationalize the requested
permissions, and the security-sensitive method calls allowed
by the requested permissions can also be used by malicious
functionality. AppContext focuses on exposing the contexts of
security-sensitive behaviors. We refer back to this example in
the rest of the paper to illustrate how AppContext formalizes
the abstraction of contexts of security-sensitive behaviors and
extracts these contexts from app binary code.

IV. CONTEXT OF SECURITY-SENSITIVE BEHAVIOR

In this section, we formally define the context of a security-
sensitive behavior.

We consider a security-sensitive behavior as an invocation
of a security-sensitive method under a certain context. A
security-sensitive method is a method that meets at least one
of the following three requirements: (1) Permission-protected



methods. Some methods in the Android API require permis-
sions to be invoked. Such methods usually access security-
sensitive resources and data (the detailed list of the methods
is specified in PScout [20]). (2) The methods that is either
a source method or a sink method (output channel) of an
information flow. An information flow consists of a source
from which the security-sensitive data may originate and a
sink to which the data may be sent (the detailed list of
sources and sinks are specified in Susi [21]). Sources and
sinks are not always protected by permission; for example,
FileOutputStream.write is a sink method to write the data to a
file but does not require Android permissions to be invoked.
A permission-protected method may not be a source/sink
method; for example, ContextWrapper.setWallpaper is pro-
tected by permission SET WALLPAPER, but is neither a
source nor a sink. (3) Reflection methods [22] and dynamic
code-loading methods [23]. Resolving reflection or dynamic
loading methods in static analysis is a known difficult problem
with fundamental limitations [24]. For this reason, we do not
attempt to resolve these methods, but rather treat them as being
security sensitive. In doing so, we are being conservative,
because these methods may result in invoking other security-
sensitive methods. There are a few methods in the Android
API allowing apps to load and invoke code at runtime that
has also been leveraged by existing malware [4] (a detail list
is listed on our project website [25]).

Our definition of context (Definition 4.6) includes two
important characteristics that determine the invocations of
security-sensitive method calls: activation events (Definition
4.2) and context factors (Definition 4.5). Such definition
represents a set of essential elements for decision making in
app inspection.

The activation events are the external events that trigger
the security-sensitive methods. The external events include UI
events (events triggered by interactions on apps’ graphical user
interfaces), SYSTEM events (events initiated by the system-
state changes such as receiving SMS), and HARDWARE
events (events triggered by the interactions on the device
interfaces, such as pressing the HOME or BACK button).
Activation events connect security-sensitive behaviors to the
behaviors’ “initiator” in the external environment (e.g., users
or system), as the events are triggered when the external
environment changes or the mobile system reaches a certain
state.

To infer activation events of security-sensitive method calls,
we analyze the entry points (e.g., ActionReceiver.OnReceive()
and SendTextActivity$4.onClick() in Figure 1(a) ) of call graph
that contains the security-sensitive method calls. In an An-
droid app, not all entry points are triggered by activation
events, and some of entry points can be triggered only
by inter-component communications. For example, MainSer-
vice.OnCreate() is triggered by startService() in the component
ActionReceiver. An analysis needs to trace back a chain of
entry-point methods executed before the invocation of the
security-sensitive methods to identify the entry points that can
be used to infer activation events.

ActionReceiver.OnReceive() 

MainService.OnCreate() 

SendTextActivity$4.onClick() 

SplashActivity.OnCreate() 

SmsManager.sendTextMessage() 

SendTextActivity$5.run() 

MainService.b() 

Fig. 2: ECG of CG shown in Figure 1(a)

To assist the analysis to locate entry points triggered by
activation events, we first define an extended call graph that
connects all the ICCs in an app.

Definition 4.1. An extended call graph ECG = (N,E)
for an app p is a directed graph in which each node n ∈ N
denotes a method in p, and each edge e(a, b) ∈ E denotes
either a calling relationship from a to b or a in one component
A calls b in another component B. An entry point of the ECG
is a node ne that has no incoming edges (i.e., for each nodes
n ∈ N , e(n, ne) /∈ E).

An extended call graph (ECG) is a call graph with edges
representing ICCs. The entry point of ECG can be triggered
by activation events. For example, Figure 2 shows part of
MoonSms’s ECG. Compared to the corresponding call graph
(CG) shown in Figure 1(a), the ECG has an ICC edge from
ActionReceiver.OnReceive to MainService.OnCreate, connect-
ing the component ActionReceiver to component MainService.
ECG enables our approach (Section V) to link the security-
sensitive method call (SmsManager.sendTextMessage) to the
entry point ActionReceiver.OnReceive, and the activation event
(signal strength changes) can be further inferred from the entry
point. We next define the activation event.

Definition 4.2. An activation event actne,nk
of a method

call nk is the event that triggers the entry point ne in an
extended call graph ECG = (N,E) and there exists a call
path P = nen1n2...nk such that e(ne, n1) ∈ E and for
i = 1, 2, ..., k, 1 ≤ k, e(ni−1, ni) ∈ E.

Activation events are identified by their action types, which
can be inferred from entry points. Specifically, the action types
of UI events are their corresponding operation types (e.g.,
click, long click), the action types of system events are state
changes that trigger the events (e.g., signal strength changes),
and the action types of hardware events are the component
lifecycle phases that the events lead to (e.g., onPause, leaving
the component; onResume, re-entering the component).

The context factors are environmental attributes that control
the execution of security-sensitive method calls. The values
of context factors can affect control flows from entry points
triggered by activation events to security-sensitive method
calls. To precisely describe the control flows in an Android
app, we adopt and simplify the definition of an inter-procedure
control-flow graph (ICFG) from Harrold et al. [17] and define
a reduced inter-procedure control-flow graph (RICFG).

Definition 4.3. Given an ICFG, an entry point ne, and a
method call nk, a reduced inter-procedure control-flow graph
RICFGne,nk

is a subgraph of ICFG that contains all the
paths from ne to nk.



For example, Figure 3(a) shows an RICFGne,nk
where

the entry point ne is ActionReceiver.OnReceive() in the ECG
(shown in Figure 2) and the security-sensitive method call nk

is sendTextMessage.
Apps usually obtain the values of the environmental at-

tributes by using certain Java/Android API methods (e.g., cur-
rentTimeMillis(), getInstalledApplications()). We denote such
API methods as environment-property methods. We next define
control dependence among statements and use control depen-
dence and environment-property methods to define context
factors.

Definition 4.4. In a program, if a statement ns controls
whether a statement n is executed, n is control dependent on
ns.

Definition 4.5. Given an RICFGne,nk
and a set of con-

ditional statements Sne,nk
in RICFGne,nk

that nk is control
dependent on, a context factor fne,nk,si is an environmental
attribute whose value is used in a conditional statement si
where si ∈ Sne,nk

.
The context factors are computed by analyzing the infor-

mation flows (data dependence) from environment-property
methods to conditional statements that control the execution
of security-sensitive method in the RICFG. Based on these
definitions, we formally define a context:

Definition 4.6. A context Cne,nk
for method call nk is a

tuple consisting of the activation event actne,nk
and the set

of context factors {fne,nk,si |si ∈ Sne,nk
} where Sne,nk

is the
set of conditional statements in RICFGne,nk

.

V. APPCONTEXT

We next present AppContext, our approach that extracts
the values of elements in the context definition defined in
Section IV. First, AppContext constructs a call graph from an
apps binary and performs static analysis to locate its security-
sensitive behaviors. Next, AppContext identifies activation
events by the entry points of the computed call graph, and
converts the call graph into an ECG by using ICC informa-
tion. Then, AppContext constructs RICFGs for each security-
sensitive method calls in the ECG and traverses each RICFG to
find conditional statement sets. Next, AppContext finds context
factors whose values are used in conditional statements via
information flow analysis and then generates the complete
contexts using identified activation events and context factors.
Finally, AppContext classifies the security-sensitive behaviors
by using the features of the extracted contexts.

A. Locating Security-Sensitive Behaviors
AppContext locates security-sensitive method behaviors by

constructing call graphs and locating security-sensitive method
calls within the call graphs (we leverage Flowdroid’s call
graph building [26]; please check their paper [18] for details).
Security-sensitive method calls are divided into three groups
by the information used to identify them, as illustrated below.

First, the permission-protected API methods, source or
sink methods, reflection methods, and dynamic code-loading
methods are all identified by using a method signature. If a

method matches a method signature in this group, AppContext
extracts and saves the method name, permission, and the entry
points for later analysis.

Second, the methods that read or write security-sensitive
Content Providers are identified by the URIs of the content
providers. To access a content provider, the URI designating
the recipient content provider is passed to a ContentResolver
class (Section II). Only the method calls using the URIs of
security-sensitive content providers are security sensitive. The
list of URIs designating security-sensitive content providers is
provided in PScout [20]. If the URI parameter of a method is
in the URI list, AppContext saves the URI, permission, and
the entry points for later analysis.

Finally, the methods that send or receive security-sensitive
Intents are identified by the Intent-action strings. An app
can call sendBroadcast or registerReceiver with Intent action
strings to send or receive specified Intent messages. The list of
Intent-action strings requiring permissions to send or receive
is provided in PScout [20]. If the intent parameter in the
method is in the list, AppContext saves the Intent-action string,
permission, and the entry points for later analysis.

B. Identifying Activation Events

As discussed in Section IV, the activation events are rep-
resented by their action types. Action types can be extracted
from the app’s entry points. AppContext identifies activation
events by analyzing two types of entry points. (1) For system
events handled by intent filters and hardware events, their
entry points are lifecycle methods. If the components of the
lifecycle methods have intent filters specified for system Intent
messages, the entry points are invoked by system events.
Otherwise, the entry points are invoked by hardware events. (2)
For both system events captured by event-handling methods
and UI events, their entry points should be event-handling
methods.

Algorithm 1 presents the analysis used to extract activa-
tion events for the given security-sensitive method calls. The
analysis returns a list of activation events (E) for each security-
sensitive method call. The analysis takes security-sensitive
method calls and their corresponding entry points as input. An
entry point belongs to one of two above-mentioned categories:
lifecycle methods and event-handling methods.

For the first category of entry points, lifecycle methods,
the analysis first decides whether the activation event could
be a system event captured by intent filters (Line 6). If the
component that the lifecycle method belongs to has intent
filters, for each intent filter, the attributes in the intent filters
are used to represent the activation events of the contexts. For
each activation event, AppContext create a tuple and saves
activation event along with the method call and the entry point
in the tuple to the E list for later analysis (Line 9).

The analysis then decides whether the lifecycle method can
be invoked by ICC calls (e.g., startService, sendBroadcast)
(Line 13). If there are method calls invoking the lifecycle
method, the analysis adds ICC edges to the CG (Line 14), and
replaces entry points of the ICC calls with the original entry



Algorithm 1: IdentifyActivationEvent
Inputs : B: A set of contexts without context factors and activation events (i.e.,

tuples consisting of security-sensitive method calls and their entry
points in call graphs)
CG: The call graph of the whole app
A: App binary code

Outputs: E : A set of contexts without context factors (i.e., tuples consisting of
security-sensitive method calls, their activation events, and
corresponding entry points)
ECG: The extended call graph of the whole app

1 begin
2 E ← ∅
3 foreach b ∈ B do
4 entrypoint← getEntrypoint(b)
5 if isLifeCycleMethods(entrypoint) then
6 if hasIntentFilters(entrypoint, A) then

// System events (by intent filters)
7 Filters← getF ilters(entrypoint, A)
8 foreach filter ∈ Filters do
9 E.addFilter(b, filter)

10 end
11 end
12 ICC ← findICCs(CG, entrypoint)
13 if ICC 6= ∅ then

// adding ICC edges
14 CG.add(ICC)

// Recursively invoke the algorithm
15 E ← replaceEntryPoint(b, CG)
16 E.addAll(identifyActivationEvent(E,CG,A))
17 end
18 else

// Hardware events
19 E.addLifeCycle(c)
20 end
21 end
22 if isEventHandler(entrypoint) then
23 E.addHandler(c)
24 end
25 end
26 ECG← CG
27 return E
28 end

points (Line 15). Then Algorithm 1 is invoked recursively with
the augmented CG (i.e., ECG) and new entry points to cover
all activation events. The activation events are then saved in
the tuples for later analysis (Line 16).

If the lifecycle method cannot be invoked from app code,
then the security-sensitive method call is triggered by hardware
events. We use the attributes of the lifecycle methods to
represent the activation events, and save the activation events
in the tuples for later analysis (Line 19).

For the second category of entry points, event-handling
methods, the analysis uses the attributes of the UI event-
handling methods or system event-handling methods to rep-
resent the activation events, and save the activation events in
the tuples for later analysis (Line 23).

C. Extracting Context Factors

After computing the ECG and activation events for a
security-sensitive method call, AppContext constructs and
traverses the RICFGs to extract context factors. As shown
in Section IV, the RICFGs need to be constructed based
on the ECG. Thus, for each security-sensitive method call,
AppContext identifies the ECG’s entry points that can lead to
the invocation of the method. Then AppContext obtains the
ICFG of the app by connecting the CFG of each node on the
ECG. Based on the ICFG, AppContext constructs the RICFGs

ActionReceiver.OnReceive() 

MainService.OnCreate() 

Entry 

If(data.getHours>23 || date.getHours< 5 ) 

StartService(MainService) 

Date date = new Date(); 

b(); 

MainService.b() 

SmsManager.sendTextMessage() 

true 
ActionReceiver.OnReceive() 

MainService.OnCreate() 

MainService.b() 

SmsManager. 
sendTextMessage() 

(a) (b) 

Fig. 3: An RICFG (a) and its corresponding ECG subgraph (b)

If(data.getHours>23  
|| date.getHours< 5 ) 

If(current – last > 43200000 ) 

Date date = new Date(); db.query(“LastConnectTime") 

System.currentTimeMillis() 

Conditional Stmt 

Information Flow 

Environment-property 
Method 

Calendar SystemTime DataBase 

Context Factors 
SmsManager.sendTextMessage() 

Fig. 4: Context factors of MoonSms in Figure 1

from each entry point to the security-sensitive method call. For
each RICFG, AppContext traverses the RICFG to identify the
conditional statements on which the security-sensitive method
is control-dependent. Finally, AppContext saves the set of
extracted conditional statements with the security-sensitive
method call and the corresponding activation events.

Figure 4 presents the analysis used to extract context factors.
For each conditional statement extracted in the previous step,
AppContext tracks the information flow from the environment-
property methods (Section IV) to the conditional statement.
The sources of the information flows indicate which con-
text factors control the invocation of the security-sensitive
behaviors. In the MoonSms example, the context factors are
Calendar information, system time, and database information.
By combining the context factors with corresponding activa-
tion events of the security-sensitive method calls, AppContext
generates the complete context tuples.

D. Classifying Security-Sensitive Behaviors

Leveraging the extracted contexts to classify security-
sensitive behaviors as malicious and benign, we formulate the
detection of malicious behaviors as a classification problem.
AppContext leverages a supervised learning approach to train
a classifier to compute the conditional likelihood of a security-
sensitive behavior being malicious versus benign given context
features. Specifically, AppContext uses a support vector ma-
chine (SVM) as the classifier because SVM is very resilient
to over-fitting even with a large number of values.

Classification is performed using a set of features. A feature
is a function that associates a training example with a value,
i.e., a function evaluates a certain single domain-specific
criterion for the example. AppContext leverages the list of
features in Table I for classifying security-sensitive behaviors.
The list consists of the features about the security-sensitive
behavior itself, and the features describing the contexts of the
behavior: the activation events and the context factors. With



TABLE I: FEATURE CATEGORIES FOR CLASSIFICATION

Features of Behavior Information
Permission Security-sensitive method call

Features of Activation Event
Hardware event System event UI event

Features of Context Factors
List of environmental attributes

this list of features, AppContext generates a feature vector for
each context of a security-sensitive behavior.

Table II shows an example of feature vectors. For features
describing behavior information (i.e., Permission, Method
Call), the feature values are the name of the permission
or method. For methods such as source/sink, reflection, or
dynamic loading methods that do not have corresponding per-
missions (i.e., do not require permissions to be invoked), the
permission names are predefined strings such as “SOURCE”,
“SINK”, “REFLECTION”, “DYNLOADING”. For features
describing activation events, the feature values are the action
types (Section IV) of the events. For features describing the
context factors (F1, F2, ..., F142), the feature values are either
“1” (the context contains the context factor) or “0” (the context
factor is not part of the context).

VI. TOOL IMPLEMENTATION

In this section, we briefly illustrate implementation details
of AppContext. More information can be found on our project
website [25].

Static Analysis. AppContext leverages Soot [27] as its un-
derlying static analysis framework. AppContext uses Dexpler
[28] to convert Dalvik bytecode into the Jimple intermediate
representation from which Soot constructs its call graph. Ap-
pContext also leverages FlowDroid [18], a static taint analysis
tool based on Soot, to provide a precise modeling of the
Android component lifecycles and callback‘ methods.

Context extraction. To extract contexts, AppContext uses
the permission mappings provided by PScout [20] as input
and performs the analysis discussed in Section V. Since
AppContext relies on PScout’s mappings, the soundness and
completeness of the mappings may affect the number of false
positives and false negatives produced by AppContext.

VII. EMPIRICAL EVALUATIONS

To evaluate the effectiveness of AppContext and using
context information to detect malware, we have conducted
three evaluations. We seek to answer the following research
questions:

• RQ1: How effective is AppContext in identifying mal-
ware? How does AppContext compare to the approach
without context information in terms of the effectiveness
of malware identification?

• RQ2: How do activation events and context factors in
our context definition contribute to the effectiveness of
malware identification?

• RQ3: How accurate is our static analysis in inferring
contexts?

A. Study Subjects

Our subject apps include 846 Android apps in total (633
benign apps, 202 malicious apps, and 11 open-source apps).
To collect malicious apps, we randomly select 130 malicious
apps from a malware dataset collected by Zhou et al. [4],
30 malicious apps from the VirusShare dataset [29], and 50
malicious apps from the Contagio dataset [30]. We also select
17 malicious apps identified by VirusTotal [31] that were
posted on Google Play in 2013 but were later removed by
Google. Our final malware dataset contains 202 malicious
apps. These malicious apps cover the majority of existing
Android malware families from 2011 to 2014, which are
rapidly evolving to circumvent detection by various mobile
security software.

To collect benign apps, we download the top 500 apps for
each category from Google Play as of January 2013. Because
FlowDroid runs out of memory on large apps, to ensure that
enough apps can be analyzed without errors, for each category,
we randomly select 20 apps under 5 MB and 20 apps without
size restriction from these top 500 apps. We also exclude the
apps identified as malware by VirusTotal and the apps that
cause FlowDroid to throw exceptions or timeout. The final
benign dataset contains 633 apps. To collect open-source apps,
we randomly select 15 apps from F-Droid [32]. Among these
15 apps, we exclude 4 apps that do not have security-sensitive
behaviors. Our open-source dataset contains 11 apps.

We apply AppContext to extract contexts from the subject
apps. AppContext runs on a desktop with 3.4 GHz Intel
Core i7 processor and 8 GB of memory. We set the timeout
of AppContext as 80 minutes, and AppContext exceeds the
timeout limit for 162 apps, which are then excluded from
the later study. For the 846 apps being used as subjects,
AppContext takes on average 647 seconds to finish the analysis
of one app.

B. RQ 1: Overall Effectiveness

To answer RQ1, we label the extracted contexts from
the subject apps, and perform a ten-fold cross-validation to
evaluate the overall effectiveness of AppContext. To make
a fair comparison with the existing approaches that do not
use context information, we apply the supervised learning
approach using all the features of AppContext, and then apply
the same supervised learning approach using the features
containing only the behavior information shown in Table I (i.e.,
security-sensitive method calls and permissions). The results
are shown in Table III and Table IV, respectively (the second
and third rows).

Labelling security-sensitive method calls. Because there
is no ground truth for determining a security-sensitive method
call as malicious or benign, as a best-effort solution, we
systematically label security-sensitive method calls as mali-
cious based on the existing malware signatures [31], [33],
[34]. Specifically, we label a security-sensitive method call
as malicious if the class/package name of the method call
matches any class/package name that we collected from the



TABLE II: FEATURE VECTORS FOR MOONSMS EXAMPLE

Permission Method Call Hardware System UI F1 F2 F3* F4* F5* F6 ... F142

SEND SMS sendTextMessage N/A SIG STR N/A 0 0 1 0 0 0 ... 0
SEND SMS sendTextMessage EnterApp N/A N/A 0 0 0 1 1 0 ... 0
SEND SMS sendTextMessage N/A N/A Click 0 0 0 0 0 0 ... 0
* F3 = Calendar, F4 = System Time, F5 = Database

existing malware signatures. We label the rest of security-
sensitive method calls as benign.

We collect class/package names from malware signatures of
three sources. (1) Apposcopy [33] includes a list of semantic
signatures for existing malware along with a tool to check
apps’ binaries against the signatures. We run all of the subject
apps using a tool that we reproduced based on Apposcopy and
record the names of the packages and classes that match the
signatures. (2) We use class names in Androguard’s signature
database [34]. (3) The VirusTotal [31] service inspects mal-
ware by using a number of antivirus software and reports the
family that the malware belongs to. We identify the malware
family that each of our malicious apps belongs to using
VirusTotal, and we identify the package/class names of the
malicious payloads from the online technical reports provided
by the antivirus software vendors for each malware family.

Cross Validation. We use the labeled behaviors (i.e.,
method calls) both as training and test data in a ten-fold cross-
validation [35], which is a standard approach for evaluating
machine-learning techniques. It works by randomly dividing
all data into 10 equally sized buckets, training the classifier
on 9 of the buckets, and classifying the remaining bucket for
testing. This process is repeated 10 times, with each of the 10
buckets used exactly once as the testing data. We report the
average precision and recall in Table IV.

Results. We evaluate the effectiveness of AppContext in
identifying both malicious behaviors and malicious apps. An
app is identified as a malicious app if any of its security-
sensitive method calls is identified as malicious. Table III and
Table IV show that AppContext (the row of Complete Context)
has higher precision and recall in both identifying malicious
behaviors and identifying malware than the existing approach
that does not use context information (the row of Behavior
Information). We next present two major reasons that cause
such misidentification.

First, AppContext misidentifies a number of security-
sensitive method calls triggered by UI events and without
context factors. This result suggests that compared to system
events and hardware events, UI events have less indication of
the maliciousness of a security-sensitive method call.

Second, a few method calls are incorrectly identified as
malicious because we mistakenly label similar benign behav-
iors as malicious. In malicious payloads, a small number of
security-sensitive method calls may not have malicious inten-
tions, such as MediaPlayer.pause protected by the WAKE
LOCK permission in malicious payloads. However, as we
label all security-sensitive method calls in a malicious payload,
AppContext incorrectly identifies such benign method calls as
malicious. This result suggests that the identification results

TABLE III: MALICIOUS SECURITY-SENSITIVE BEHAVIORS IDENTIFIED BY APPCON-
TEXT

Features Used P(%) R(%)
Complete Context (C) 94.8 84.8

Behavior Information (B) 79.0 37.3
Activation Events (E) 83.2 49.5
Context Factors (F) 90.6 71.2

B & E 88.0 71.3
B & F 90.2 76.9
E & F 92.5 77.3

TABLE IV: IDENTIFICATION OF MALWARE BY APPCONTEXT

Features Used TP FP FN P(%) R(%)
Complete Context (C) 192 27 10 87.7 95.0

Behavior Information (B) 169 78 33 68.4 83.6
Activation Events (E) 163 78 39 67.6 80.6
Context Factors (F) 150 26 52 85.2 74.2

B & E 193 63 9 75.3 95.5
B & F 180 46 22 79.6 89.1
E & F 187 27 15 87.3 92.5

TP = True Positive, FP = False Positive, FN = False Negative
P = Precision, R = Recall

can be improved if the training set for the classifier is labeled
more accurately.

We also evaluate the effectiveness of AppContext in iden-
tifying malicious reflective calls or dynamic code-loading
method calls. AppContext shows high precisions and recalls
in identifying malicious method calls. AppContext correctly
identifies 872 out of 922 malicious method calls but also
misidentifies 180 benign method calls as malicious (i.e., 82.9%
precision, 94.5% recall). AppContext correctly identifies 710
out of 787 malicious dynamic code-loading method calls
but misidentifies 137 benign method calls as malicious (i.e.,
83.8% precision, 90.2% recall). For all 56 malicious apps
using root exploits (which are commonly launched by dynamic
code loading [4]), only one malicious app (i.e., AsRoot) was
not identified by AppContext. As the detailed behaviors of
reflective calls and dynamically-loaded code were unobtain-
able in static analysis, such results show the advantage that
AppContext can differentiate benign and malicious security-
sensitive method calls without knowing the detailed behaviors
being triggered.

C. RQ2: Effectiveness of Activation Events and Context Fac-
tors

RQ2 evaluates the effectiveness of both activation events
and context factors in identifying malicious app behaviors. To
answer RQ2, we use only partial features listed in Table I to
train the classification model. We apply the same supervised
learning approach used in RQ1 with the features being the
activation events (the row of Activation Events), context
factors (the row of Context Factors), behavior information and
activation events (the row of B & E), behavior information and



context factors (the row of B & F), and activation events and
context factors (the row of E & F), respectively. The results
are shown in Table III and Table IV.

Results. We evaluate the effectiveness of activation events
by comparing the result of the analysis using activation events
(the rows of Complete Context, B & E, and E & F) to the result
of the analysis not using activation events (the rows of B &
F, B, and F) in Table III and Table IV. The comparison shows
that adding the features of activation events to the analysis
improves both the precision and recall of the identification
results. We find that the improvements are mainly because
activation events help effectively identify malicious method
calls that have no context factors. The activation events in
some of these malicious method calls are often used by benign
apps to update the UI to inform users that certain events
have occurred. For example, UMS DISCONNECTED is used
to inform users that the device has been disconnected from
USB mass storage, SIG STR is used to inform users that
the phone signal strength changes, and ACTION POWER
CONNECTED is used to inform users that external power has
been connected to the device. Because these events are seldom
used in benign apps to trigger security-sensitive method calls,
the activation events can effectively differentiate benign and
malicious behaviors with no context factors.

We also evaluate the effectiveness of context factors by
comparing the results of the analysis using context factors
(the row of Complete Context, B & F, and E & F) with
the result of analysis not using context factors (the row
of B & E, B, and E). The result shows that the analysis
using context factors has relatively higher precisions (over
90% for identifying malicious behaviors and around 80% for
identifying malware). We find that the improvement in the
precision is mainly because context factors effectively help
identify the malicious behaviors whose activation events are UI
events. We also find that context factors can disambiguate the
malicious and benign intentions for certain vague cases when
security-sensitive method calls are protected by commonly-
used resources (e.g., Internet). For example, we find that
some of benign apps and malware will both connect to
servers (URL.openConnection) after the apps start, and thus
the activation events and behaviors for both apps are the same.
However, the context factors of malware include data from an
Intent message (Intent.getExtras) and data from the Internet
(URL.openStream), suggesting that whether the apps connect
to the server or not is determined by whoever sends the Intent
message or the Internet data. Such context factors demonstrate
the command & control nature of certain families of malware.

In addition, context factors also reflect controls of security-
sensitive method calls in benign apps. For example, we find
that a few benign apps and malware obtain device information
(TelephonyManager.getDeviceId etc.) after the apps start. The
difference between two types of apps is that the benign apps
invoke getDeviceId only when auto logins are successful (i.e.,
the context factors for getDeviceId include information from
the database or the Internet). But malware directly sends
device information to the server (i.e, no context factors).

TABLE V: EFFECTIVENESS OF CONTEXT EXTRACTION

# App # Context # Verified Context Time(sec)
11 88 82 291

Finally, we further evaluate the effectiveness of contexts
by running analysis using features of activation events and
context factors (the row of E & F). The precision and recall
of the analysis are comparable as the precision and recall
of the analysis using complete context. Such results suggest
that contexts can identify a number of malicious method
calls without knowing the detailed behaviors being triggered,
consistent with the analysis result for behaviors that invoke
reflection or dynamic code-loading methods. Both results indi-
cate that the maliciousness of a security-sensitive method call
is more closely related to the behavior’s intention (reflected
via contexts) than the type of the security-sensitive resources
that the behavior accesses.

D. RQ3: Accuracy of Static Analysis

To evaluate the effectiveness of the extracted contexts, we
dynamically verify whether the security-sensitive method is
invoked by triggering the activation events and configuring
context factors based on the contexts. The execution path
triggered by the activation events may vary when the context
factors are assigned different values. In this evaluation, we use
only open-source apps as the subjects. The main reason is that
these apps come with source code, which can be used to easily
infer the correct values of context factors in controlling the
execution of the security-sensitive method calls. AppContext
is applied on 11 open-source apps to extract contexts and the
analysis time is logged.

To verify the correctness of context factors, we analyze the
source code to check whether a security-sensitive method call
is control dependent on each context factor. If the control
dependence exists, we determine the values of the context
factors that lead to the execution of the security-sensitive
method call. We then configure the external environment
based on the inferred values of context factors and trigger the
activation events of 88 security-sensitive behaviors of these
apps.

We use the activity manager through the Android Debug
Bridge (ADB) to simulate system events, and manually sim-
ulate hardware and UI events. We configure the values of
each context factor by changing configuration of emulators.
Then, we use the profiler of the activity manager to log the
executions of the apps. To monitor the execution traces, we
start the profiler before firing the activation events and stop
the profiler 5 seconds afterwards.

The preceding evaluation process has some limitations. The
profiler cannot trace the invocations of the onCreate or on-
Destoy methods, because the profiling must be started after the
creation of an app’s process and be stopped before the destruc-
tion of the app’s process. We also exclude events that cannot be
simulated through ADB such as error events (e.g., triggering
the onError method in MediaPlayer.OnErrorListener) and the
context factors whose value we cannot manipulate such as data
from URL connection).



Results. Table V shows our evaluation results. Among the
88 generated contexts, we are able to confirm 82 contexts
(i.e., 93.2% accuracy). Six contexts cannot be verified because
the activation events could not trigger the security-sensitive
method calls. The context factors of all the contexts whose
activation events could trigger the security-sensitive method
calls are accurate. The average analysis time is 291 seconds,
which is acceptable for the app reviewing process. Note that
the evaluation result is conservative since the inferred values
for context factors may not be accurate.

VIII. THREAT TO VALIDITY

Threats to External Validity. Due to the current limitation
in our implementation and testing environment, our dataset
consisted of randomly selected apps that were smaller than
5MB, which may not be representative of the entire market.
We plan to address this limitation in the future and include
market apps whose sizes are larger than 5MB to further reduce
the threats. The subjects from malware datasets can be biased
by their selection methodologies [4], we chose our malware
set from different sources to alleviate the bias in the subject
selection.

Threats to Internal Validity. Inaccuracies in labeling
behaviors are inevitable due to the lack of ground truth for
identifying malicious behaviors. In addition, there may be hu-
man errors in collecting statistics and studying the evaluation
results. These threats are mitigated by double-checking all
manual work and ensuring that the results were agreed upon
by at least two authors.

IX. RELATED WORK

Contexts of Permission Uses. Pegasus [36] constructs
permission event graphs using static analysis to model the
effects of the event system and API semantics, and performs
model checking to enforce the policies specified by users.
However, specifying these policies requires that users have es-
tablished knowledge about the expected behavior/functionality
of the app and an understanding of the Android platform.
Our approach complements Pegasus by providing the contexts,
which can be used to construct Pegasus’ policies. AppIn-
tent [9] presents a sequence of GUI events that lead to data
transmissions and let analysts decide whether the data trans-
missions are intended. AppIntent handles only app behaviors
activated by GUI events while our approach analyzes a more
comprehensive set of contexts (e.g., receivers and background
services) and can complement their approach to handle data
transmissions that are not triggered by sequences of GUI
manipulations. AsDroid [37] detects stealthy app behaviors by
identifying mismatches between API invocations and the text
displayed in the GUIs. Our approach focuses on the events
that trigger app behaviors rather than the textual analysis of
the GUIs. Since app behaviors can occur without displaying
a GUI, the textual analysis of GUIs alone is insufficient
to detect all stealthy app behaviors. DroidAPIMiner [38]
identifies malicious apps by performing frequency analysis of
API invocations within a set of benign and malicious apps to

extract the features of malware, and uses machine learning to
determine the most relevant features. Our approach focuses
on what causes security-sensitive API calls to be used rather
than the pattern of API calls that are used. WHYPER [39]
examines whether app descriptions provide any justification
for the app’s permission uses. WHYPER focuses on why apps
request permissions while our approach focuses on how apps
actually use the requested permissions.

Risk Ranking and Certification of Apps. Peng et al. [40]
present the risk information of an app compared to other
apps by using probabilistic generative models to calculate
risk scoring of the app. MAST [41] triages Android apps by
analyzing features extracted from the APKs. MAST uses ma-
chine learning techniques to measure the correlation between
features and directs malware analysis resources to the apps
that have the greater potential of risks. Kirin [42] performs
lightweight certification of apps by identifying dangerous app
configurations against a set of security rules. These approaches
leverage various kinds of features or configurations in apps to
identify potential risks. Unlike these approaches that present
the risk scores or ranking for users, our approach analyzes
the bytecode of apps to extract the contexts of permission
uses. However, our approach can complement risk ranking and
certification techniques by providing the extracted permission
contexts as another metric for their evaluation.

Malware Detection. Our approach complements existing
malware-detection analysis by identifying contexts that indi-
cates the intentions of data uses. There are various approaches
that perform analysis to detect malicious behaviors, such as
dynamic taint analysis [7], [43], language-based information
flow [44]–[47], static analysis [33], [48]–[50], and Bayesian
classification [51]. However, these approaches are concerned
about how privacy-sensitive data protected by permissions are
used, while our approach provides the contexts under which
the permissions are triggered.

X. CONCLUSION

We have presented AppContext, an approach based on an
abstraction that extracts and transforms the context information
into a set of essential elements to differentiate benign and
malicious behaviors. In our evaluations, AppContext correctly
identifies 192 out of 202 malicious apps with 87.7% preci-
sion and 95% recall. Our evaluation results suggest that the
maliciousness of a security-sensitive behavior is more closely
related to the behavior’s intention (reflected via contexts) than
the type of the security-sensitive resources that the behavior
accesses.
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